我就廢話不多說啦,直接上代碼吧!
target = [1.5, 2.1, 3.3, -4.7, -2.3, 0.75] prediction = [0.5, 1.5, 2.1, -2.2, 0.1, -0.5] error = [] for i in range(len(target)): error.append(target[i] - prediction[i]) print("Errors: ", error) print(error) squaredError = [] absError = [] for val in error: squaredError.append(val * val)#target-prediction之差平方 absError.append(abs(val))#誤差絕對值 print("Square Error: ", squaredError) print("Absolute Value of Error: ", absError) print("MSE = ", sum(squaredError) / len(squaredError))#均方誤差MSE from math import sqrt print("RMSE = ", sqrt(sum(squaredError) / len(squaredError)))#均方根誤差RMSE print("MAE = ", sum(absError) / len(absError))#平均絕對誤差MAE targetDeviation = [] targetMean = sum(target) / len(target)#target平均值 for val in target: targetDeviation.append((val - targetMean) * (val - targetMean)) print("Target Variance = ", sum(targetDeviation) / len(targetDeviation))#方差 print("Target Standard Deviation = ", sqrt(sum(targetDeviation) / len(targetDeviation)))#標準差
網站題目:python之MSE、MAE、RMSE的使用-創新互聯
分享路徑:http://m.newbst.com/article12/dephgc.html
成都網站建設公司_創新互聯,為您提供自適應網站、響應式網站、搜索引擎優化、面包屑導航、云服務器、微信公眾號
聲明:本網站發布的內容(圖片、視頻和文字)以用戶投稿、用戶轉載內容為主,如果涉及侵權請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網站立場,如需處理請聯系客服。電話:028-86922220;郵箱:631063699@qq.com。內容未經允許不得轉載,或轉載時需注明來源: 創新互聯