免费观看又色又爽又黄的小说免费_美女福利视频国产片_亚洲欧美精品_美国一级大黄大色毛片

高性能nosql,高性能模式有什么用

高性能 NoSQL

關系數據庫經過幾十年的發展,已經非常成熟,但同時也存在不足:

創新互聯建站主要從事網站設計制作、成都網站建設、網頁設計、企業做網站、公司建網站等業務。立足成都服務黃石,十載網站建設經驗,價格優惠、服務專業,歡迎來電咨詢建站服務:18982081108

表結構是強約束的,業務變更時擴充很麻煩。

如果對大數據量的表進行統計運算,I/O會很高,因為即使只針對某列進行運算,也需要將整行數據讀入內存。

全文搜索只能使用 Like 進行整表掃描,性能非常低。

針對這些不足,產生了不同的 NoSQL 解決方案,在某些場景下比關系數據庫更有優勢,但同時也犧牲了某些特性,所以不能片面的迷信某種方案,應將其作為 SQL 的有利補充。

NoSQL != No SQL,而是:

NoSQL = Not Only SQL

典型的 NoSQL 方案分為4類:

Redis 是典型,其 value 是具體的數據結構,包括 string, hash, list, set, sorted set, bitmap, hyperloglog,常被稱為數據結構服務器。

以 list 為例:

LPOP key 是移除并返回隊列左邊的第一個元素。

如果用關系數據庫就比較麻煩了,需要操作:

Redis 的缺點主要體現在不支持完成的ACID事務,只能保證隔離性和一致性,無法保證原子性和持久性。

最大的特點是 no-schema,無需在使用前定義字段,讀取一個不存在的字段也不會導致語法錯誤。

特點:

以電商為例,不同商品的屬性差異很大,如冰箱和電腦,這種差異性在關系數據庫中會有很大的麻煩,而使用文檔數據庫則非常方便。

文檔數據庫的主要缺點:

關系數據庫是按行來存儲的,列式數據庫是按照列來存儲數據。

按行存儲的優勢:

在某些場景下,這些優勢就成為劣勢了,例如,計算超重人員的數據,只需要讀取體重這一列進行統計即可,但行式存儲會將整行數據讀取到內存中,很浪費。

而列式存儲中,只需要讀取體重這列的數據即可,I/O 將大大減少。

除了節省I/O,列式存儲還有更高的壓縮比,可以節省存儲空間。普通行式數據庫的壓縮比在 3:1 到 5:1 左右,列式數據庫在 8:1 到 30:1,因為單個列的數據相似度更高。

列式存儲的隨機寫效率遠低于行式存儲,因為行式存儲時同一行多個列都存儲在連續空間中,而列式存儲將不同列存儲在不連續的空間。

一般將列式存儲應用在離線大數據分析統計場景,因為這時主要針對部分列進行操作,而且數據寫入后無須更新。

關系數據庫通過索引進行快速查詢,但在全文搜索的情景下,索引就不夠了,因為:

假設有一個交友網站,信息表如下:

需要匹配性別、地點、語言列。

需要匹配性別、地點、愛好列。

實際搜索中,各種排列組合非常多,關系數據庫很難支持。

全文搜索引擎是使用 倒排索引 技術,建立單詞到文檔的索引,例如上面的表信息建立倒排索引:

所以特別適合根據關鍵詞來查詢文檔內容。

上面介紹了幾種典型的NoSQL方案,及各自的適用場景和特點,您可以根據實際需求進行選擇。

NoSQL和MySQL的區別大嗎?

即非關系型數據庫和關系型數據庫。

MySQL的優點:事務處理—保持數據的一致性;由于以標準化為前提,數據更新的開銷很小(相同的字段基本上只有一處);可以進行Join等復雜查詢

NoSQL的優點:首先它是基于內存的,也就是數據放在內存中,而不是像數據庫那樣把數據放在磁盤上,而內存的讀取速度是磁盤讀取速度的幾十倍到上百倍,所以NoSQL工具的速度遠比數據庫讀取速度要快得多,滿足了高響應的要求。即使NoSQL將數據放在磁盤中,它也是一種半結構化的數據 格式,讀取到解析的復雜度遠比MySQL要簡單,這是因為MySQL存儲的是經過結構化、多范式等有復雜規則的數據,還原為內存結構的速度較慢。NoSQL在很大程度上滿足了高并發、快速讀/和響應的要求,所以它也是Java互聯網系統的利器。

簡單的擴展:典型例子是Cassandra,由于其架構是類似于經典的P2P,所以能通過輕松地添加新的節點來擴展這個集群;

低廉的成本:這是大多數分布式數據庫共有的特點,因為主要都是開源軟件,沒有昂貴的License成本;

NoSQL的缺點:大多數NoSQL數據庫都不支持事務,也不像 SQL Server和Oracle那樣能提供各種附加功能,比如BI和報表等; 不提供對SQL的支持

那么該如何選擇?

如果規模和性能比24小時的數據一致性更重要,那NoSQL是一個理想的選擇 (NoSQL依賴于BASE模型——基本可用、軟狀態、最終一致性)。

但如果要保證到“始終一致”,尤其是對于機密信息和財務信息,那么MySQL很可能是最優的選擇(MySQL依賴于ACID模型——原子性、一致性、獨立性和耐久性)。

如果關系數據庫在你的應用場景中,完全能夠很好的工作,而你又是非常善于使用和維護關系數據庫的,那么我覺得你完全沒有必要遷移到NoSQL上面,除非你是個喜歡折騰的人。如果你是在金融,電信等以數據為王的關鍵領域,目前使用的是Oracle數據庫來提供高可靠性的,除非遇到特別大的瓶頸,不然也別貿然嘗試NoSQL。

然而,在WEB2.0的網站中,關系數據庫大部分都出現了瓶頸。在磁盤IO、數據庫可擴展上都花費了開發人員相當多的精力來優化,比如做分表分庫(database sharding)、主從復制、異構復制等等,然而,這些工作需要的技術能力越來越高,也越來越具有挑戰性。如果你正在經歷這些場合,那么我覺得你應該嘗試一下NoSQL了。

具體問題具體分析

MySQL體積小、速度快、成本低、結構穩定、便于查詢,可以保證數據的一致性,但缺乏靈活性。

NoSQL高性能、高擴展、高可用,不用局限于固定的結構,減少了時間和空間上的開銷,卻又很難保證數據一致性。

————————————————

版權聲明:本文為CSDN博主「蒟蒻熊」的原創文章,遵循CC 4.0 BY-SA版權協議,轉載請附上原文出處鏈接及本聲明。

原文鏈接:

高并發寫選sql還是nosql?

SQL的獨特優勢包括:

1. SQL能夠加強與數據的交互,并允許對單個數據庫設計提出問題。這是很關鍵的特征,因為無法交互的數據基本上是沒用的,并且,增強的交互性能夠帶來新的見解、新的問題和更有意義的未來交互。

2. SQL是標準化的,使用戶能夠跨系統運用他們的知識,并對第三方附件和工具提供支持。

3. SQL能夠擴展,并且是多功能和經過時間驗證的,這能夠解決從快寫為主導的傳輸到掃描密集型深入分析等問題。

4. SQL對數據呈現和存儲采用正交形式,一些SQL系統支持JSON和其他結構化對象格式,比NoSQL具有更好的性能和更多功能。

NoSQL特點:

易擴展

NoSQL數據庫種類繁多,但是一個共同的特點都是去掉關系數據庫的關系型特性。數據之間無關系,這樣就非常容易擴展。也無形之間,在架構的層面上帶來了可擴展的能力。

大數據量,高性能

NoSQL數據庫都具有非常高的讀寫性能,尤其在大數據量下,同樣表現優秀。這得益于它的無關系性,數據庫的結構簡單。NoSQL的Cache是記錄級的,是一種細粒度的Cache,所以NoSQL在這個層面上來說就要性能高很多了。

靈活的數據模型

NoSQL無需事先為要存儲的數據建立字段,隨時可以存儲自定義的數據格式。而在關系數據庫里,增刪字段是一件非常麻煩的事情。如果是非常大數據量的表,增加字段簡直就是一個噩夢。這點在大數據量的web2.0時代尤其明顯。

高可用

NoSQL在不太影響性能的情況,就可以方便的實現高可用的架構。比如Cassandra,HBase模型,通過復制模型也能實現高可用。

一、NoSQL數據庫簡介

Web1.0的時代,數據訪問量很有限,用一夫當關的高性能的單點服務器可以解決大部分問題。

隨著Web2.0的時代的到來,用戶訪問量大幅度提升,同時產生了大量的用戶數據。加上后來的智能移動設備的普及,所有的互聯網平臺都面臨了巨大的性能挑戰。

NoSQL(NoSQL = Not Only SQL ),意即“不僅僅是SQL”,泛指非關系型的數據庫。

NoSQL 不依賴業務邏輯方式存儲,而以簡單的key-value模式存儲。因此大大的增加了數據庫的擴展能力。

Memcache Memcache Redis Redis MongoDB MongoDB 列式數據庫 列式數據庫 Hbase Hbase

HBase是Hadoop項目中的數據庫。它用于需要對大量的數據進行隨機、實時的讀寫操作的場景中。

HBase的目標就是處理數據量非常龐大的表,可以用普通的計算機處理超過10億行數據,還可處理有數百萬列元素的數據表。

Cassandra Cassandra

Apache Cassandra是一款免費的開源NoSQL數據庫,其設計目的在于管理由大量商用服務器構建起來的龐大集群上的海量數據集(數據量通常達到PB級別)。在眾多顯著特性當中,Cassandra最為卓越的長處是對寫入及讀取操作進行規模調整,而且其不強調主集群的設計思路能夠以相對直觀的方式簡化各集群的創建與擴展流程。

主要應用:社會關系,公共交通網絡,地圖及網絡拓譜(n*(n-1)/2)

為什么要使用NoSQL?NOSQL的優勢

這次的NoSQL專欄系列將先整體介紹NoSQL,然后介紹如何把NoSQL運用到自己的項目中合適的場景中,還會適當地分析一些成功案例,希望有成功使用NoSQL經驗的朋友給我提供一些線索和信息。

NoSQL概念隨著web2.0的快速發展,非關系型、分布式數據存儲得到了快速的發展,它們不保證關系數據的ACID特性。NoSQL概念在2009年被提了出來。NoSQL最常見的解釋是“non-relational”,“Not Only SQL”也被很多人接受。(“NoSQL”一詞最早于1998年被用于一個輕量級的關系數據庫的名字。)

NoSQL被我們用得最多的當數key-value存儲,當然還有其他的文檔型的、列存儲、圖型數據庫、xml數據庫等。在NoSQL概念提出之前,這些數據庫就被用于各種系統當中,但是卻很少用于web互聯網應用。比如cdb、qdbm、bdb數據庫。

傳統關系數據庫的瓶頸

傳統的關系數據庫具有不錯的性能,高穩定型,久經歷史考驗,而且使用簡單,功能強大,同時也積累了大量的成功案例。在互聯網領域,MySQL成為了絕對靠前的王者,毫不夸張的說,MySQL為互聯網的發展做出了卓越的貢獻。

在90年代,一個網站的訪問量一般都不大,用單個數據庫完全可以輕松應付。在那個時候,更多的都是靜態網頁,動態交互類型的網站不多。

到了最近10年,網站開始快速發展。火爆的論壇、博客、sns、微博逐漸引領web領域的潮流。在初期,論壇的流量其實也不大,如果你接觸網絡比較早,你可能還記得那個時候還有文本型存儲的論壇程序,可以想象一般的論壇的流量有多大。

Memcached+MySQL

后來,隨著訪問量的上升,幾乎大部分使用MySQL架構的網站在數據庫上都開始出現了性能問題,web程序不再僅僅專注在功能上,同時也在追求性能。程序員們開始大量的使用緩存技術來緩解數據庫的壓力,優化數據庫的結構和索引。開始比較流行的是通過文件緩存來緩解數據庫壓力,但是當訪問量繼續增大的時候,多臺web機器通過文件緩存不能共享,大量的小文件緩存也帶了了比較高的IO壓力。在這個時候,Memcached就自然的成為一個非常時尚的技術產品。

Memcached作為一個獨立的分布式的緩存服務器,為多個web服務器提供了一個共享的高性能緩存服務,在Memcached服務器上,又發展了根據hash算法來進行多臺Memcached緩存服務的擴展,然后又出現了一致性hash來解決增加或減少緩存服務器導致重新hash帶來的大量緩存失效的弊端。當時,如果你去面試,你說你有Memcached經驗,肯定會加分的。

Mysql主從讀寫分離

由于數據庫的寫入壓力增加,Memcached只能緩解數據庫的讀取壓力。讀寫集中在一個數據庫上讓數據庫不堪重負,大部分網站開始使用主從復制技術來達到讀寫分離,以提高讀寫性能和讀庫的可擴展性。Mysql的master-slave模式成為這個時候的網站標配了。

分表分庫隨著web2.0的繼續高速發展,在Memcached的高速緩存,MySQL的主從復制,讀寫分離的基礎之上,這時MySQL主庫的寫壓力開始出現瓶頸,而數據量的持續猛增,由于MyISAM使用表鎖,在高并發下會出現嚴重的鎖問題,大量的高并發MySQL應用開始使用InnoDB引擎代替MyISAM。同時,開始流行使用分表分庫來緩解寫壓力和數據增長的擴展問題。這個時候,分表分庫成了一個熱門技術,是面試的熱門問題也是業界討論的熱門技術問題。也就在這個時候,MySQL推出了還不太穩定的表分區,這也給技術實力一般的公司帶來了希望。雖然MySQL推出了MySQL Cluster集群,但是由于在互聯網幾乎沒有成功案例,性能也不能滿足互聯網的要求,只是在高可靠性上提供了非常大的保證。

MySQL的擴展性瓶頸

在互聯網,大部分的MySQL都應該是IO密集型的,事實上,如果你的MySQL是個CPU密集型的話,那么很可能你的MySQL設計得有性能問題,需要優化了。大數據量高并發環境下的MySQL應用開發越來越復雜,也越來越具有技術挑戰性。分表分庫的規則把握都是需要經驗的。雖然有像淘寶這樣技術實力強大的公司開發了透明的中間件層來屏蔽開發者的復雜性,但是避免不了整個架構的復雜性。分庫分表的子庫到一定階段又面臨擴展問題。還有就是需求的變更,可能又需要一種新的分庫方式。

MySQL數據庫也經常存儲一些大文本字段,導致數據庫表非常的大,在做數據庫恢復的時候就導致非常的慢,不容易快速恢復數據庫。比如1000萬4KB大小的文本就接近40GB的大小,如果能把這些數據從MySQL省去,MySQL將變得非常的小。

關系數據庫很強大,但是它并不能很好的應付所有的應用場景。MySQL的擴展性差(需要復雜的技術來實現),大數據下IO壓力大,表結構更改困難,正是當前使用MySQL的開發人員面臨的問題。

NOSQL的優勢易擴展NoSQL數據庫種類繁多,但是一個共同的特點都是去掉關系數據庫的關系型特性。數據之間無關系,這樣就非常容易擴展。也無形之間,在架構的層面上帶來了可擴展的能力。

大數據量,高性能

NoSQL數據庫都具有非常高的讀寫性能,尤其在大數據量下,同樣表現優秀。這得益于它的無關系性,數據庫的結構簡單。一般MySQL使用Query Cache,每次表的更新Cache就失效,是一種大粒度的Cache,在針對web2.0的交互頻繁的應用,Cache性能不高。而NoSQL的Cache是記錄級的,是一種細粒度的Cache,所以NoSQL在這個層面上來說就要性能高很多了。

靈活的數據模型

NoSQL無需事先為要存儲的數據建立字段,隨時可以存儲自定義的數據格式。而在關系數據庫里,增刪字段是一件非常麻煩的事情。如果是非常大數據量的表,增加字段簡直就是一個噩夢。這點在大數據量的web2.0時代尤其明顯。

高可用NoSQL在不太影響性能的情況,就可以方便的實現高可用的架構。比如Cassandra,HBase模型,通過復制模型也能實現高可用。

總結NoSQL數據庫的出現,彌補了關系數據(比如MySQL)在某些方面的不足,在某些方面能極大的節省開發成本和維護成本。

MySQL和NoSQL都有各自的特點和使用的應用場景,兩者的緊密結合將會給web2.0的數據庫發展帶來新的思路。

目前哪些NoSQL數據庫應用廣泛,各有什么特點

特點:

它們可以處理超大量的數據。

它們運行在便宜的PC服務器集群上。

PC集群擴充起來非常方便并且成本很低,避免了“sharding”操作的復雜性和成本。

它們擊碎了性能瓶頸。

NoSQL的支持者稱,通過NoSQL架構可以省去將Web或Java應用和數據轉換成SQL友好格式的時間,執行速度變得更快。

“SQL并非適用于所有的程序代碼,” 對于那些繁重的重復操作的數據,SQL值得花錢。但是當數據庫結構非常簡單時,SQL可能沒有太大用處。

沒有過多的操作。

雖然NoSQL的支持者也承認關系數據庫提供了無可比擬的功能集合,而且在數據完整性上也發揮絕對穩定,他們同時也表示,企業的具體需求可能沒有那么多。

Bootstrap支持

因為NoSQL項目都是開源的,因此它們缺乏供應商提供的正式支持。這一點它們與大多數開源項目一樣,不得不從社區中尋求支持。

優點:

易擴展

NoSQL數據庫種類繁多,但是一個共同的特點都是去掉關系數據庫的關系型特性。數據之間無關系,這樣就非常容易擴展。也無形之間,在架構的層面上帶來了可擴展的能力。

大數據量,高性能

NoSQL數據庫都具有非常高的讀寫性能,尤其在大數據量下,同樣表現優秀。這得益于它的無關系性,數據庫的結構簡單。一般MySQL使用 Query Cache,每次表的更新Cache就失效,是一種大粒度的Cache,在針對web2.0的交互頻繁的應用,Cache性能不高。而NoSQL的 Cache是記錄級的,是一種細粒度的Cache,所以NoSQL在這個層面上來說就要性能高很多了。

靈活的數據模型

NoSQL無需事先為要存儲的數據建立字段,隨時可以存儲自定義的數據格式。而在關系數據庫里,增刪字段是一件非常麻煩的事情。如果是非常大數據量的表,增加字段簡直就是一個噩夢。這點在大數據量的web2.0時代尤其明顯。

高可用

NoSQL在不太影響性能的情況,就可以方便的實現高可用的架構。比如Cassandra,HBase模型,通過復制模型也能實現高可用。

主要應用:

Apache HBase

這個大數據管理平臺建立在谷歌強大的BigTable管理引擎基礎上。作為具有開源、Java編碼、分布式多個優勢的數據庫,Hbase最初被設計應用于Hadoop平臺,而這一強大的數據管理工具,也被Facebook采用,用于管理消息平臺的龐大數據。

Apache Storm

用于處理高速、大型數據流的分布式實時計算系統。Storm為Apache Hadoop添加了可靠的實時數據處理功能,同時還增加了低延遲的儀表板、安全警報,改進了原有的操作方式,幫助企業更有效率地捕獲商業機會、發展新業務。

Apache Spark

該技術采用內存計算,從多迭代批量處理出發,允許將數據載入內存做反復查詢,此外還融合數據倉庫、流處理和圖計算等多種計算范式,Spark用Scala語言實現,構建在HDFS上,能與Hadoop很好的結合,而且運行速度比MapReduce快100倍。

Apache Hadoop

該技術迅速成為了大數據管理標準之一。當它被用來管理大型數據集時,對于復雜的分布式應用,Hadoop體現出了非常好的性能,平臺的靈活性使它可以運行在商用硬件系統,它還可以輕松地集成結構化、半結構化和甚至非結構化數據集。

Apache Drill

你有多大的數據集?其實無論你有多大的數據集,Drill都能輕松應對。通過支持HBase、Cassandra和MongoDB,Drill建立了交互式分析平臺,允許大規模數據吞吐,而且能很快得出結果。

Apache Sqoop

也許你的數據現在還被鎖定于舊系統中,Sqoop可以幫你解決這個問題。這一平臺采用并發連接,可以將數據從關系數據庫系統方便地轉移到Hadoop中,可以自定義數據類型以及元數據傳播的映射。事實上,你還可以將數據(如新的數據)導入到HDFS、Hive和Hbase中。

Apache Giraph

這是功能強大的圖形處理平臺,具有很好可擴展性和可用性。該技術已經被Facebook采用,Giraph可以運行在Hadoop環境中,可以將它直接部署到現有的Hadoop系統中。通過這種方式,你可以得到強大的分布式作圖能力,同時還能利用上現有的大數據處理引擎。

Cloudera Impala

Impala模型也可以部署在你現有的Hadoop群集上,監視所有的查詢。該技術和MapReduce一樣,具有強大的批處理能力,而且Impala對于實時的SQL查詢也有很好的效果,通過高效的SQL查詢,你可以很快的了解到大數據平臺上的數據。

Gephi

它可以用來對信息進行關聯和量化處理,通過為數據創建功能強大的可視化效果,你可以從數據中得到不一樣的洞察力。Gephi已經支持多個圖表類型,而且可以在具有上百萬個節點的大型網絡上運行。Gephi具有活躍的用戶社區,Gephi還提供了大量的插件,可以和現有系統完美的集成到一起,它還可以對復雜的IT連接、分布式系統中各個節點、數據流等信息進行可視化分析。

MongoDB

這個堅實的平臺一直被很多組織推崇,它在大數據管理上有極好的性能。MongoDB最初是由DoubleClick公司的員工創建,現在該技術已經被廣泛的應用于大數據管理。MongoDB是一個應用開源技術開發的NoSQL數據庫,可以用于在JSON這樣的平臺上存儲和處理數據。目前,紐約時報、Craigslist以及眾多企業都采用了MongoDB,幫助他們管理大型數據集。(Couchbase服務器也作為一個參考)。

十大頂尖公司:

Amazon Web Services

Forrester將AWS稱為“云霸主”,談到云計算領域的大數據,那就不得不提到亞馬遜。該公司的Hadoop產品被稱為EMR(Elastic Map Reduce),AWS解釋這款產品采用了Hadoop技術來提供大數據管理服務,但它不是純開源Hadoop,經過修改后現在被專門用在AWS云上。

Forrester稱EMR有很好的市場前景。很多公司基于EMR為客戶提供服務,有一些公司將EMR應用于數據查詢、建模、集成和管理。而且AWS還在創新,Forrester稱未來EMR可以基于工作量的需要自動縮放調整大小。亞馬遜計劃為其產品和服務提供更強大的EMR支持,包括它的RedShift數據倉庫、新公布的Kenesis實時處理引擎以及計劃中的NoSQL數據庫和商業智能工具。不過AWS還沒有自己的Hadoop發行版。

Cloudera

Cloudera有開源Hadoop的發行版,這個發行版采用了Apache Hadoop開源項目的很多技術,不過基于這些技術的發行版也有很大的進步。Cloudera為它的Hadoop發行版開發了很多功能,包括Cloudera管理器,用于管理和監控,以及名為Impala的SQL引擎等。Cloudera的Hadoop發行版基于開源Hadoop,但也不是純開源的產品。當Cloudera的客戶需要Hadoop不具備的某些功能時,Cloudera的工程師們就會實現這些功能,或者找一個擁有這項技術的合作伙伴。Forrester表示:“Cloudera的創新方法忠于核心Hadoop,但因為其可實現快速創新并積極滿足客戶需求,這一點使它不同于其他那些供應商。”目前,Cloudera的平臺已經擁有200多個付費客戶,一些客戶在Cloudera的技術支持下已經可以跨1000多個節點實現對PB級數據的有效管理。

Hortonworks

和Cloudera一樣,Hortonworks是一個純粹的Hadoop技術公司。與Cloudera不同的是,Hortonworks堅信開源Hadoop比任何其他供應商的Hadoop發行版都要強大。Hortonworks的目標是建立Hadoop生態圈和Hadoop用戶社區,推進開源項目的發展。Hortonworks平臺和開源Hadoop聯系緊密,公司管理人員表示這會給用戶帶來好處,因為它可以防止被供應商套牢(如果Hortonworks的客戶想要離開這個平臺,他們可以輕松轉向其他開源平臺)。這并不是說Hortonworks完全依賴開源Hadoop技術,而是因為該公司將其所有開發的成果回報給了開源社區,比如Ambari,這個工具就是由Hortonworks開發而成,用來填充集群管理項目漏洞。Hortonworks的方案已經得到了Teradata、Microsoft、Red Hat和SAP這些供應商的支持。

IBM

當企業考慮一些大的IT項目時,很多人首先會想到IBM。IBM是Hadoop項目的主要參與者之一,Forrester稱IBM已有100多個Hadoop部署,它的很多客戶都有PB級的數據。IBM在網格計算、全球數據中心和企業大數據項目實施等眾多領域有著豐富的經驗。“IBM計劃繼續整合SPSS分析、高性能計算、BI工具、數據管理和建模、應對高性能計算的工作負載管理等眾多技術。”

Intel

和AWS類似,英特爾不斷改進和優化Hadoop使其運行在自己的硬件上,具體來說,就是讓Hadoop運行在其至強芯片上,幫助用戶打破Hadoop系統的一些限制,使軟件和硬件結合的更好,英特爾的Hadoop發行版在上述方面做得比較好。Forrester指出英特爾在最近才推出這個產品,所以公司在未來還有很多改進的可能,英特爾和微軟都被認為是Hadoop市場上的潛力股。

MapR Technologies

MapR的Hadoop發行版目前為止也許是最好的了,不過很多人可能都沒有聽說過。Forrester對Hadoop用戶的調查顯示,MapR的評級最高,其發行版在架構和數據處理能力上都獲得了最高分。MapR已將一套特殊功能融入其Hadoop發行版中。例如網絡文件系統(NFS)、災難恢復以及高可用性功能。Forrester說MapR在Hadoop市場上沒有Cloudera和Hortonworks那樣的知名度,MapR要成為一個真正的大企業,還需要加強伙伴關系和市場營銷。

Microsoft

微軟在開源軟件問題上一直很低調,但在大數據形勢下,它不得不考慮讓Windows也兼容Hadoop,它還積極投入到開源項目中,以更廣泛地推動Hadoop生態圈的發展。我們可以在微軟的公共云Windows Azure HDInsight產品中看到其成果。微軟的Hadoop服務基于Hortonworks的發行版,而且是為Azure量身定制的。

微軟也有一些其他的項目,包括名為Polybase的項目,讓Hadoop查詢實現了SQLServer查詢的一些功能。Forrester說:“微軟在數據庫、數據倉庫、云、OLAP、BI、電子表格(包括PowerPivot)、協作和開發工具市場上有很大優勢,而且微軟擁有龐大的用戶群,但要在Hadoop這個領域成為行業領導者還有很遠的路要走。”

Pivotal Software

EMC和Vmware部分大數據業務分拆組合產生了Pivotal。Pivotal一直努力構建一個性能優越的Hadoop發行版,為此,Pivotal在開源Hadoop的基礎上又添加了一些新的工具,包括一個名為HAWQ的SQL引擎以及一個專門解決大數據問題的Hadoop應用。Forrester稱Pivotal Hadoop平臺的優勢在于它整合了Pivotal、EMC、Vmware的眾多技術,Pivotal的真正優勢實際上等于EMC和Vmware兩大公司為其撐腰。到目前為止,Pivotal的用戶還不到100個,而且大多是中小型客戶。

Teradata

對于Teradata來說,Hadoop既是一種威脅也是一種機遇。數據管理,特別是關于SQL和關系數據庫這一領域是Teradata的專長。所以像Hadoop這樣的NoSQL平臺崛起可能會威脅到Teradata。相反,Teradata接受了Hadoop,通過與Hortonworks合作,Teradata在Hadoop平臺集成了SQL技術,這使Teradata的客戶可以在Hadoop平臺上方便地使用存儲在Teradata數據倉庫中的數據。

AMPLab

通過將數據轉變為信息,我們才可以理解世界,而這也正是AMPLab所做的。AMPLab致力于機器學習、數據挖掘、數據庫、信息檢索、自然語言處理和語音識別等多個領域,努力改進對信息包括不透明數據集內信息的甄別技術。除了Spark,開源分布式SQL查詢引擎Shark也源于AMPLab,Shark具有極高的查詢效率,具有良好的兼容性和可擴展性。近幾年的發展使計算機科學進入到全新的時代,而AMPLab為我們設想一個運用大數據、云計算、通信等各種資源和技術靈活解決難題的方案,以應對越來越復雜的各種難題。

標題名稱:高性能nosql,高性能模式有什么用
文章起源:http://m.newbst.com/article2/phhiic.html

成都網站建設公司_創新互聯,為您提供網站制作小程序開發自適應網站動態網站網站建設網站收錄

廣告

聲明:本網站發布的內容(圖片、視頻和文字)以用戶投稿、用戶轉載內容為主,如果涉及侵權請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網站立場,如需處理請聯系客服。電話:028-86922220;郵箱:631063699@qq.com。內容未經允許不得轉載,或轉載時需注明來源: 創新互聯

營銷型網站建設