免费观看又色又爽又黄的小说免费_美女福利视频国产片_亚洲欧美精品_美国一级大黄大色毛片

機器學習快速落地,AmazonSageMaker終于來了!

前不久,全球市場份額占比的公有云廠商亞馬遜云服務(AWS)宣布,旗下機器學習服務Amazon SageMaker在中國寧夏和北京區域正式上線,對于想通過機器學習加速數字化轉型的企業來說,這無疑是一個重大的福利。基于Amazon SageMaker發布的一系列工具,企業不但擁有了機器學習所需要的強大的模型、算法等方面的能力,還省去了準備、建立、部署、訓練等環節,系統自帶的各種功能,可以極大地提升開發效率,降低總體成本。

創新互聯建站堅持“要么做到,要么別承諾”的工作理念,服務領域包括:網站設計、網站建設、企業官網、英文網站、手機端網站、網站推廣等服務,滿足客戶于互聯網時代的彝良網站設計、移動媒體設計的需求,幫助企業找到有效的互聯網解決方案。努力成為您成熟可靠的網絡建設合作伙伴!

那么,問題來了,Amazon SageMaker到底是什么?

SageMaker是什么?

“按照英文字義理解,Sage是魔法的意思,SageMaker是一個魔法生成器,是一項完全托管的機器學習服務,可以幫助開發者和數據科學家快速地規模化構建、訓練和部署機器學習 (ML) 模型。” AWS首席云計算企業戰略顧問 張俠博士,從SageMaker的概念開始,進行了詳細解讀。

傳統的機器學習要經歷一個艱難、復雜的過程,需要配備一些專業的技術人員,包括計算機、物理、統計、應用數學等好幾個專業的博士,用張量計算、卷積計算等方法,去構建整個流程。不僅耗費人力、物力、財力,花費時間也長,一般至少需要八、九個月時間才能完成。而通過SageMaker,技術人員只需要具備基礎知識,就可以在幾周內完成機器學習部署。

SageMaker擁有業界最全的內置算法,關于計算機視覺的有圖像分類、對象監測、語義分割的算法;關于推薦的有分解機算法;關于主題模型的有LDA、NTM;關于預測的有DeepAR;關于聚類的有KMeans算法;關于回歸的有Linear、XGBoost、Learner、KNN等等。

AWS在去年re:Invent大會上還推出了Amazon SageMaker Studio,提供的是一個全面整合的機器學習的集成開發環境,它可以讓開發者無需關心代碼層面的問題,一鍵即可進行大規模協作,同時可快速創建易用的實驗環境,對上千個實驗進行比較、跟蹤,在全可見、可控的環境下自動生成高精度、高質量的模型,并且可以自動調試、監控和運維。

另外,Amazon SageMaker還有一個特有的彈性筆記本功能,通過Amazon SageMaker Notebooks,用戶可在幾秒鐘內訪問筆記本,并且在不顯示增加計算資源的情況下啟動,靈活調整計算資源類型。

同時,還有多個符合特定業務場景的工具應用。比如:Amazon SageMaker Experiments,可跨實驗和用戶大規模跟蹤、度量和實驗數據,對組織和目標進行自定義管理,讓訓練快進快出、保證質量;Amazon SageMaker Debugger,可自動收集數據并用于可視化分析、調試,能自動化錯誤監測,通過警報提升生產力;Amazon SageMaker Model Monitor,可對模型進行監測,并通過內置規則檢測數據漂移或編寫自定義規則,用于定制化分析。再比如:完全可見、可控的自動化模型構建工具Amazon SageMaker Autopilot;用于數據處理和模型評估的分析作業工具Amazon SageMaker Processing;還有訓練一次便可多處運行的Amazon SageMaker Neo等等。

如果用一句話概括,SageMaker其實是一個能提供端到端服務的機器學習平臺,具有零安裝、模型訓練靈活、按秒付費等特點,因此可以幫助用戶將基于機器學習的模型快速構建到擁有智能應用程序的生產環境中去。從準備開始,到最后的機器學習部署,SageMaker能提供全流程的工具集。

至于,Amazon SageMaker具體應該怎么來用?AWS為何要花大力氣部署與機器學習相關的技術?這要從機器學習發展現狀以及AWS在人工智能領域的戰略說起。

AWS為何如此看重機器學習?

眾所周知,人工智能其實是一個比較大的概念,包括機器人、語言識別、圖像識別、自然語言處理和專家系統等,主要是研究、開發用于模擬、延伸和擴展人的智能的理論、方法、技術和應用系統的一門技術科學。

作為人工智能的重要分支,機器學習強調的是學習,而不是計算機程序,主要通過一臺機器使用復雜的算法來分析大量的數據,識別數據中的模式,并做出一個預測,不需要像過去那樣,通過人手動在機器的軟件中編寫特定的指令,機器可以模仿人獲取一些學習的能力。

與機器學習密切相關的還有深度學習,是一個基于神經網絡的模式分析方法的統稱。因為機器學習從上個世紀80年代開始被廣泛關注,所以之后的十幾年,深度學習也得到了快速發展,取得了突破性的成果,返過來推動了人工智能和機器學習的發展。

大體來看,機器學習有幾個重要元素:一個是數據;另一個是計算能力;第三個是算法。從某種程度上來說,機器學習是大數據平臺、云計算和一些深度學習框架凝聚在一起的產物。其中,云計算起到了決定性作用,它既能提供大數據的存儲,提供了很多計算能力,又使得用戶可以非常方便地交流、分享各種各樣的算法。

如今,人工智能和機器學習已經成為新一代信息技術的典型代表,很多傳統企業以及創新型企業都把機器學習看成是企業最重要的變革手段,用于提高產品自動化能力,或者進一步優化業務流程。但同時我們也發現,機器學習正面臨兩大難以逾越的挑戰。第一,人才短缺。人工智能以及機器學習都需要很多專業知識,而了解這方面知識的人才又比較欠缺,有些人才需要百萬年薪才能找到。第二,技術落地難。如何快速構建、擴展與人工智能相關的產品和應用,并把一些創新型技術落地到生產環境中去,還有一段很長的路要走。

作為互聯網巨頭企業,亞馬遜公司之所以要致力于機器學習領域,并不是簡單的追趕技術熱潮,而是企業互聯網內在基因使然。從二十多年前有電商開始,亞馬遜就在關注與機器學習相關的工作,產品推薦、產品搜索,物流配送等等很多創新業務和服務都有機器學習的身影。比如:在倉儲業務環境中,除了送貨的無人機,亞馬遜還推出了智能助理Amazon Echo、無人值守商店Amazon GO等等,背后其實都有機器學習和人工智能的身影。

到目前為止,AWS有數千名工程師以及數據科技人員,在從事與人工智能相關的工作,除了滿足企業內部的應用需求,還要進行業務創新,把更多服務打包成產品,推向市場。就像AWS云計算的發展脈絡一樣,最初也是基于自己企業內部應用,最后形成產品以及解決方案,為更多外部企業提供服務。對于機器學習,AWS有著自己的定義,那就是把機器學習能力轉移到每一位創建者手中,使它成為被廣泛應用的工具。

如何為行業賦能?

了解了AWS機器學習發展歷史,對于用戶為什么更愿意選擇AWS這個問題,也就不難理解!

首先,是工具的豐富性。AWS提供了最廣泛、深入的機器學習服務,其中核心服務就是Amazon SageMaker,它能加速整個機器學習過程,包括建模、訓練調優、部署管理等。外加AWS云平臺的助力,用戶可以把數據存儲、數據倉庫,包括物聯網的技術和機器學習結合到一起,形成所謂的AIoT智能物聯網。

其次,應用的快速落地。在選擇機器學習工具或者解決方案時,用戶看重的不只是功能的豐富性,還有應用的可實施性。目前,全球有數萬家企業選擇了AWS來運行機器學習工作負載。AWS擁有的機器學習用戶數量要高于其他任何運營商的至少兩倍。可以說,我們在各行各業都能看到AWS機器學習的身影,比如健康、醫療、在線教育等一些行業。

AWS的機器學習可以落地到各種特定應用場景。比如:在短視頻行業,通過大量機器學習以及推薦算法的使用,可以自動生成視頻內容,并對內容進行分類,用戶只要有瀏覽記錄,就能判斷他會喜歡其他哪些視頻。在金融行業,從風險欺詐偵測到智能投顧等很多方面,機器學習都有施展拳腳的空間。再比如:健康醫療行業,從藥物的發現,到基因的使用、到各種個性化的醫療診斷,包括精準醫療、在線醫療等等,機器學習都能發揮關鍵作用。

而從應用效果來看,很多用戶對AWS的機器學習給與了高度評價。以大型方程式賽車Formula One 為例,Formula One公司在21個國家/地區舉辦過一系列賽車活動,在全球擁有超過5億粉絲,2017年創下18億美元的總收入。為了推動業務增長,Formula One使用AWS服務來推動賽事模式的變革,通過數據跟蹤系統和數字廣播等新技術的使用,公司增強了粉絲和車隊的賽車體驗方式。

“AWS在速度、可擴展性、可靠性、全球覆蓋范圍、合作伙伴社區以及可用云服務的廣度和深度方面,均優于其他所有云提供商。” Formula One創新和數字技術總監Pete Samara說道。

具體而言,Formula One的數據專家使用 Amazon SageMaker 培訓深度學習模型,用65年的歷史競賽數據來提取關鍵競賽成績統計數據,進行競賽預測,并讓粉絲深入了解車隊和車手采用的瞬間決策和戰略。另外,Formula One的賽車運動部門在 AWS 上運行高性能計算工作負載,在制定新的賽車設計規則時,大幅度提高了空氣動力學團隊可以運行的模擬數量和質量。

總之,機器學習帶來的諸多好處,顯而易見。可以預測,未來隨著疫情的退去,機器學習會加快落地進程,尤其在企業數字化轉型關鍵階段,如何從客戶體驗、運營、決策、創新等方面多管齊下,提高整體競爭力,是企業下一步提振經濟的關鍵點。

新聞名稱:機器學習快速落地,AmazonSageMaker終于來了!
標題來源:http://m.newbst.com/article34/cgippe.html

成都網站建設公司_創新互聯,為您提供定制開發網站維護ChatGPT微信小程序品牌網站制作App開發

廣告

聲明:本網站發布的內容(圖片、視頻和文字)以用戶投稿、用戶轉載內容為主,如果涉及侵權請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網站立場,如需處理請聯系客服。電話:028-86922220;郵箱:631063699@qq.com。內容未經允許不得轉載,或轉載時需注明來源: 創新互聯

成都網站建設