免费观看又色又爽又黄的小说免费_美女福利视频国产片_亚洲欧美精品_美国一级大黄大色毛片

如何從NumPy直接創建RNN?

使用成熟的Tensorflow、PyTorch框架去實現遞歸神經網絡(RNN),已經極大降低了技術的使用門檻。

成都創新互聯公司堅持“要么做到,要么別承諾”的工作理念,服務領域包括:網站建設、網站設計、企業官網、英文網站、手機端網站、網站推廣等服務,滿足客戶于互聯網時代的應城網站設計、移動媒體設計的需求,幫助企業找到有效的互聯網解決方案。努力成為您成熟可靠的網絡建設合作伙伴!

但是,對于初學者,這還是遠遠不夠的。知其然,更需知其所以然。

要避免低級錯誤,打好理論基礎,然后使用RNN去解決更多實際的問題的話。

那么,有一個有趣的問題可以思考一下:

不使用Tensorflow等框架,只有Numpy的話,你該如何構建RNN?

沒有頭緒也不用擔心。這里便有一項教程:使用Numpy從頭構建用于NLP領域的RNN。

可以帶你行進一遍RNN的構建流程。

初始化參數

與傳統的神經網絡不同,RNN具有3個權重參數,即:

輸入權重(input weights),內部狀態權重(internal state weights)和輸出權重(output weights)

首先用隨機數值初始化上述三個參數。

之后,將詞嵌入維度(word_embedding dimension)和輸出維度(output dimension)分別初始化為100和80。

輸出維度是詞匯表中存在的唯一詞向量的總數。

hidden_dim=100output_dim=80#thisisthetotaluniquewordsinthevocabularyinput_weights=np.random.uniform(0,1,(hidden_dim,hidden_dim))internal_state_weights=np.random.uniform(0,1,(hidden_dim,hidden_dim))output_weights=np.random.uniform(0,1,(output_dim,hidden_dim))

變量prev_memory指的是internal_state(這些是先前序列的內存)。

其他參數也給予了初始化數值。

input_weight梯度,internal_state_weight梯度和output_weight梯度分別命名為dU,dW和dV。

變量bptt_truncate表示網絡在反向傳播時必須回溯的時間戳數,這樣做是為了克服梯度消失的問題。

prev_memory=np.zeros((hidden_dim,1))learning_rate=0.0001nepoch=25T=4#lengthofsequencebptt_truncate=2dU=np.zeros(input_weights.shape)dV=np.zeros(output_weights.shape)dW=np.zeros(internal_state_weights.shape)

前向傳播

輸出和輸入向量

例如有一句話為:I like to play.,則假設在詞匯表中:

I被映射到索引2,like對應索引45,to對應索引10、**對應索引64而標點符號.** 對應索引1。

為了展示從輸入到輸出的情況,我們先隨機初始化每個單詞的詞嵌入。

input_string=[2,45,10,65]embeddings=[]#thisisthesentenceembeddinglistthatcontainstheembeddingsforeachwordforiinrange(0,T):x=np.random.randn(hidden_dim,1)embeddings.append(x)

輸入已經完成,接下來需要考慮輸出。

在本項目中,RNN單元接受輸入后,輸出的是下一個最可能出現的單詞。

用于訓練RNN,在給定第t+1個詞作為輸出的時候將第t個詞作為輸入,例如:在RNN單元輸出字為“like”的時候給定的輸入字為“I”.

現在輸入是嵌入向量的形式,而計算損失函數(Loss)所需的輸出格式是獨熱編碼(One-Hot)矢量。

這是對輸入字符串中除第一個單詞以外的每個單詞進行的操作,因為該神經網絡學習只學習的是一個示例句子,而初始輸入是該句子的第一個單詞。

RNN的黑箱計算

現在有了權重參數,也知道輸入和輸出,于是可以開始前向傳播的計算。

訓練神經網絡需要以下計算:

其中:

U代表輸入權重、W代表內部狀態權重,V代表輸出權重。

輸入權重乘以input(x),內部狀態權重乘以前一層的激活(prev_memory)。

層與層之間使用的激活函數用的是tanh。

deftanh_activation(Z):return(np.exp(Z)-np.exp(-Z))/(np.exp(Z)-np.exp(-Z))#thisisthetanhfunctioncanalsobewrittenasnp.tanh(Z)defsoftmax_activation(Z):e_x=np.exp(Z-np.max(Z))#thisisthecodeforsoftmaxfunctionreturne_x/e_x.sum(axis=0) defRnn_forward(input_embedding,input_weights,internal_state_weights,prev_memory,output_weights):forward_params=[]W_frd=np.dot(internal_state_weights,prev_memory)U_frd=np.dot(input_weights,input_embedding)sum_s=W_frd+U_frdht_activated=tanh_activation(sum_s)yt_unactivated=np.asarray(np.dot(output_weights,tanh_activation(sum_s)))yt_activated=softmax_activation(yt_unactivated)forward_params.append([W_frd,U_frd,sum_s,yt_unactivated])returnht_activated,yt_activated,forward_params

計算損失函數

之后損失函數使用的是交叉熵損失函數,由下式給出:

defcalculate_loss(output_mapper,predicted_output):total_loss=0layer_loss=[]fory,y_inzip(output_mapper.values(),predicted_output):#thisforloopcalculationisforthefirstequation,wherelossforeachtime-stampiscalculatedloss=-sum(y[i]*np.log2(y_[i])foriinrange(len(y)))lossloss=loss/float(len(y))layer_loss.append(loss)foriinrange(len(layer_loss)):#thisthetotallosscalculatedforallthetime-stampsconsideredtogether.total_losstotal_loss=total_loss+layer_loss[i]returntotal_loss/float(len(predicted_output))

最重要的是,我們需要在上面的代碼中看到第5行。

正如所知,ground_truth output(y)的形式是[0,0,….,1,…0]和predicted_output(y^hat)是[0.34,0.03,……,0.45]的形式,我們需要損失是單個值來從它推斷總損失。

為此,使用sum函數來獲得特定時間戳下y和y^hat向量中每個值的誤差之和。

total_loss是整個模型(包括所有時間戳)的損失。

反向傳播

反向傳播的鏈式法則:

如上圖所示:

Cost代表誤差,它表示的是y^hat到y的差值。

由于Cost是的函數輸出,因此激活a所反映的變化由dCost/da表示。

實際上,這意味著從激活節點的角度來看這個變化(誤差)值。

類似地,a相對于z的變化表示為da/dz,z相對于w的變化表示為dw/dz。

最終,我們關心的是權重的變化(誤差)有多大。

而由于權重與Cost之間沒有直接關系,因此期間各個相對的變化值可以直接相乘(如上式所示)。

RNN的反向傳播

由于RNN中存在三個權重,因此我們需要三個梯度。input_weights(dLoss / dU),internal_state_weights(dLoss / dW)和output_weights(dLoss / dV)的梯度。

這三個梯度的鏈可以表示如下:

所述dLoss/dy_unactivated代碼如下:

defdelta_cross_entropy(predicted_output,original_t_output):li=[]grad=predicted_outputfori,linenumerate(original_t_output):#checkifthevalueintheindexis1ornot,ifyesthentakethesameindexvaluefromthepredicted_ouputlistandsubtract1fromit.ifl==1:#grad=np.asarray(np.concatenate(grad,axis=0))grad[i]-=1returngrad

計算兩個梯度函數,一個是multiplication_backward,另一個是additional_backward。

在multiplication_backward的情況下,返回2個參數,一個是相對于權重的梯度(dLoss / dV),另一個是鏈梯度(chain gradient),該鏈梯度將成為計算另一個權重梯度的鏈的一部分。

在addition_backward的情況下,在計算導數時,加法函數(ht_unactivated)中各個組件的導數為1。例如:dh_unactivated / dU_frd=1(h_unactivated = U_frd + W_frd),且dU_frd / dU_frd的導數為1。

所以,計算梯度只需要這兩個函數。multiplication_backward函數用于包含向量點積的方程,addition_backward用于包含兩個向量相加的方程。

defmultiplication_backward(weights,x,dz):gradient_weight=np.array(np.dot(np.asmatrix(dz),np.transpose(np.asmatrix(x))))chain_gradient=np.dot(np.transpose(weights),dz)returngradient_weight,chain_gradientdefadd_backward(x1,x2,dz):#thisfunctionisforcalculatingthederivativeofht_unactivatedfunctiondx1=dz*np.ones_like(x1)dx2=dz*np.ones_like(x2)returndx1,dx2deftanh_activation_backward(x,top_diff):output=np.tanh(x)return(1.0-np.square(output))*top_diff

至此,已經分析并理解了RNN的反向傳播,目前它是在單個時間戳上實現它的功能,之后可以將其用于計算所有時間戳上的梯度。

如下面的代碼所示,forward_params_t是一個列表,其中包含特定時間步長的網絡的前向參數。

變量ds是至關重要的部分,因為此行代碼考慮了先前時間戳的隱藏狀態,這將有助于提取在反向傳播時所需的信息。

defsingle_backprop(X,input_weights,internal_state_weights,output_weights,ht_activated,dLo,forward_params_t,diff_s,prev_s):#inlidealltheparamvaluesforallthedatathatsthereW_frd=forward_params_t[0][0]U_frd=forward_params_t[0][1]ht_unactivated=forward_params_t[0][2]yt_unactivated=forward_params_t[0][3]dV,dsv=multiplication_backward(output_weights,ht_activated,dLo)ds=np.add(dsv,diff_s)#usedfortruncationofmemorydadd=tanh_activation_backward(ht_unactivated,ds)dmulw,dmulu=add_backward(U_frd,W_frd,dadd)dW,dprev_s=multiplication_backward(internal_state_weights,prev_s,dmulw)dU,dx=multiplication_backward(input_weights,X,dmulu)#inputweightsreturn(dprev_s,dU,dW,dV)

對于RNN,由于存在梯度消失的問題,所以采用的是截斷的反向傳播,而不是使用原始的。

在此技術中,當前單元將只查看k個時間戳,而不是只看一次時間戳,其中k表示要回溯的先前單元的數量。

defrnn_backprop(embeddings,memory,output_t,dU,dV,dW,bptt_truncate,input_weights,output_weights,internal_state_weights):T=4#westartthebackpropfromthefirsttimestamp.fortinrange(4):prev_s_t=np.zeros((hidden_dim,1))#requiredasthefirsttimestampdoesnothaveapreviousmemory,diff_s=np.zeros((hidden_dim,1))#thisisusedforthetruncatingpurposeofrestoringapreviousinformationfromthebeforelevelpredictions=memory[yt+str(t)]ht_activated=memory[ht+str(t)]forward_params_t=memory[params+str(t)]dLo=delta_cross_entropy(predictions,output_t[t])#thelossderivativeforthatparticulartimestampdprev_s,dU_t,dW_t,dV_t=single_backprop(embeddings[t],input_weights,internal_state_weights,output_weights,ht_activated,dLo,forward_params_t,diff_s,prev_s_t)prev_s_t=ht_activatedprev=t-1dLo=np.zeros((output_dim,1))#herethelossderiativeisturnedto0aswedonotrequireitfortheturncatedinformation.#thefollowingcodeisforthetrunatedbpttanditsforeachtime-stamp.foriinrange(t-1,max(-1,t-bptt_truncate),-1):forward_params_t=memory[params+str(i)]ht_activated=memory[ht+str(i)]prev_s_i=np.zeros((hidden_dim,1))ifi==0elsememory[ht+str(prev)]dprev_s,dU_i,dW_i,dV_i=single_backprop(embeddings[t],input_weights,internal_state_weights,output_weights,ht_activated,dLo,forward_params_t,dprev_s,prev_s_i)dU_t+=dU_i#addingthepreviousgradientsonlookbacktothecurrenttimesequencedW_t+=dW_idV+=dV_tdU+=dU_tdW+=dW_treturn(dU,dW,dV)

權重更新

一旦使用反向傳播計算了梯度,則更新權重勢在必行,而這些是通過批量梯度下降法

defgd_step(learning_rate,dU,dW,dV,input_weights,internal_state_weights,output_weights):input_weights-=learning_rate*dUinternal_state_weights-=learning_rate*dWoutput_weights-=learning_rate*dVreturninput_weights,internal_state_weights,output_weights

訓練序列

完成了上述所有步驟,就可以開始訓練神經網絡了。

用于訓練的學習率是靜態的,還可以使用逐步衰減等更改學習率的動態方法。

deftrain(T,embeddings,output_t,output_mapper,input_weights,internal_state_weights,output_weights,dU,dW,dV,prev_memory,learning_rate=0.001,nepoch=100,evaluate_loss_after=2):losses=[]forepochinrange(nepoch):if(epoch%evaluate_loss_after==0):output_string,memory=full_forward_prop(T,embeddings,input_weights,internal_state_weights,prev_memory,output_weights)loss=calculate_loss(output_mapper,output_string)losses.append(loss)time=datetime.now().strftime(\'%Y-%m-%d%H:%M:%S\')print(%s:Lossafterepoch=%d:%f%(time,epoch,loss))sys.stdout.flush()dU,dW,dV=rnn_backprop(embeddings,memory,output_t,dU,dV,dW,bptt_truncate,input_weights,output_weights,internal_state_weights)input_weights,internal_state_weights,output_weights=sgd_step(learning_rate,dU,dW,dV,input_weights,internal_state_weights,output_weights)returnlosses losses=train(T,embeddings,output_t,output_mapper,input_weights,internal_state_weights,output_weights,dU,dW,dV,prev_memory,learning_rate=0.0001,nepoch=10,evaluate_loss_after=2)

恭喜你!你現在已經實現從頭建立遞歸神經網絡了!

那么,是時候了,繼續向LSTM和GRU等的高級架構前進吧。

本文題目:如何從NumPy直接創建RNN?
當前地址:http://m.newbst.com/article42/cggeec.html

成都網站建設公司_創新互聯,為您提供網站導航響應式網站小程序開發網站制作企業網站制作網站建設

廣告

聲明:本網站發布的內容(圖片、視頻和文字)以用戶投稿、用戶轉載內容為主,如果涉及侵權請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網站立場,如需處理請聯系客服。電話:028-86922220;郵箱:631063699@qq.com。內容未經允許不得轉載,或轉載時需注明來源: 創新互聯

h5響應式網站建設