這篇文章給大家分享的是有關(guān)如何使用Python實現(xiàn)的簡單排列組合算法的內(nèi)容。小編覺得挺實用的,因此分享給大家做個參考,一起跟隨小編過來看看吧。
1.python語言簡單、方便,其內(nèi)部可以快速實現(xiàn)排列組合算法,下面做簡單介紹
2.一個列表數(shù)據(jù)任意組合
主要是利用自帶的庫:
#_*_ coding:utf-8 _*_ #__author__='dragon' import itertools list1 = [1,2,3,4,5] list2 = [] for i in range(1,len(list1)+1): iter = itertools.combinations(list1,i) list2.append(list(iter)) print(list2)
運行結(jié)果:
[[(1,), (2,), (3,), (4,), (5,)], [(1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5), (3, 4), (3, 5), (4, 5)], [(1, 2, 3), (1, 2, 4), (1, 2, 5), (1, 3, 4), (1, 3, 5), (1, 4, 5), (2, 3, 4), (2, 3, 5), (2, 4, 5), (3, 4, 5)], [(1, 2, 3, 4), (1, 2, 3, 5), (1, 2, 4, 5), (1, 3, 4, 5), (2, 3, 4, 5)], [(1, 2, 3, 4, 5)]]
3.排列的實現(xiàn)
#_*_ coding:utf-8 _*_ #__author__='dragon' import itertools list1 = [1,2,3,4,5] list2 = [] for i in range(1,len(list1)+1): iter = itertools.permutations(list1,i) list2.append(list(iter)) print(list2)
運行結(jié)果:
[[(1,), (2,), (3,), (4,), (5,)], [(1, 2), (1, 3), (1, 4), (1, 5), (2, 1), (2, 3), (2, 4), (2, 5), (3, 1), (3, 2), (3, 4), (3, 5), (4, 1), (4, 2), (4, 3), (4, 5), (5, 1), (5, 2), (5, 3), (5, 4)], [(1, 2, 3), (1, 2, 4), (1, 2, 5), (1, 3, 2), (1, 3, 4), (1, 3, 5), (1, 4, 2), (1, 4, 3), (1, 4, 5), (1, 5, 2), (1, 5, 3), (1, 5, 4), (2, 1, 3), (2, 1, 4), (2, 1, 5), (2, 3, 1), (2, 3, 4), (2, 3, 5), (2, 4, 1), (2, 4, 3), (2, 4, 5), (2, 5, 1), (2, 5, 3), (2, 5, 4), (3, 1, 2), (3, 1, 4), (3, 1, 5), (3, 2, 1), (3, 2, 4), (3, 2, 5), (3, 4, 1), (3, 4, 2), (3, 4, 5), (3, 5, 1), (3, 5, 2), (3, 5, 4), (4, 1, 2), (4, 1, 3), (4, 1, 5), (4, 2, 1), (4, 2, 3), (4, 2, 5), (4, 3, 1), (4, 3, 2), (4, 3, 5), (4, 5, 1), (4, 5, 2), (4, 5, 3), (5, 1, 2), (5, 1, 3), (5, 1, 4), (5, 2, 1), (5, 2, 3), (5, 2, 4), (5, 3, 1), (5, 3, 2), (5, 3, 4), (5, 4, 1), (5, 4, 2), (5, 4, 3)], [(1, 2, 3, 4), (1, 2, 3, 5), (1, 2, 4, 3), (1, 2, 4, 5), (1, 2, 5, 3), (1, 2, 5, 4), (1, 3, 2, 4), (1, 3, 2, 5), (1, 3, 4, 2), (1, 3, 4, 5), (1, 3, 5, 2), (1, 3, 5, 4), (1, 4, 2, 3), (1, 4, 2, 5), (1, 4, 3, 2), (1, 4, 3, 5), (1, 4, 5, 2), (1, 4, 5, 3), (1, 5, 2, 3), (1, 5, 2, 4), (1, 5, 3, 2), (1, 5, 3, 4), (1, 5, 4, 2), (1, 5, 4, 3), (2, 1, 3, 4), (2, 1, 3, 5), (2, 1, 4, 3), (2, 1, 4, 5), (2, 1, 5, 3), (2, 1, 5, 4), (2, 3, 1, 4), (2, 3, 1, 5), (2, 3, 4, 1), (2, 3, 4, 5), (2, 3, 5, 1), (2, 3, 5, 4), (2, 4, 1, 3), (2, 4, 1, 5), (2, 4, 3, 1), (2, 4, 3, 5), (2, 4, 5, 1), (2, 4, 5, 3), (2, 5, 1, 3), (2, 5, 1, 4), (2, 5, 3, 1), (2, 5, 3, 4), (2, 5, 4, 1), (2, 5, 4, 3), (3, 1, 2, 4), (3, 1, 2, 5), (3, 1, 4, 2), (3, 1, 4, 5), (3, 1, 5, 2), (3, 1, 5, 4), (3, 2, 1, 4), (3, 2, 1, 5), (3, 2, 4, 1), (3, 2, 4, 5), (3, 2, 5, 1), (3, 2, 5, 4), (3, 4, 1, 2), (3, 4, 1, 5), (3, 4, 2, 1), (3, 4, 2, 5), (3, 4, 5, 1), (3, 4, 5, 2), (3, 5, 1, 2), (3, 5, 1, 4), (3, 5, 2, 1), (3, 5, 2, 4), (3, 5, 4, 1), (3, 5, 4, 2), (4, 1, 2, 3), (4, 1, 2, 5), (4, 1, 3, 2), (4, 1, 3, 5), (4, 1, 5, 2), (4, 1, 5, 3), (4, 2, 1, 3), (4, 2, 1, 5), (4, 2, 3, 1), (4, 2, 3, 5), (4, 2, 5, 1), (4, 2, 5, 3), (4, 3, 1, 2), (4, 3, 1, 5), (4, 3, 2, 1), (4, 3, 2, 5), (4, 3, 5, 1), (4, 3, 5, 2), (4, 5, 1, 2), (4, 5, 1, 3), (4, 5, 2, 1), (4, 5, 2, 3), (4, 5, 3, 1), (4, 5, 3, 2), (5, 1, 2, 3), (5, 1, 2, 4), (5, 1, 3, 2), (5, 1, 3, 4), (5, 1, 4, 2), (5, 1, 4, 3), (5, 2, 1, 3), (5, 2, 1, 4), (5, 2, 3, 1), (5, 2, 3, 4), (5, 2, 4, 1), (5, 2, 4, 3), (5, 3, 1, 2), (5, 3, 1, 4), (5, 3, 2, 1), (5, 3, 2, 4), (5, 3, 4, 1), (5, 3, 4, 2), (5, 4, 1, 2), (5, 4, 1, 3), (5, 4, 2, 1), (5, 4, 2, 3), (5, 4, 3, 1), (5, 4, 3, 2)], [(1, 2, 3, 4, 5), (1, 2, 3, 5, 4), (1, 2, 4, 3, 5), (1, 2, 4, 5, 3), (1, 2, 5, 3, 4), (1, 2, 5, 4, 3), (1, 3, 2, 4, 5), (1, 3, 2, 5, 4), (1, 3, 4, 2, 5), (1, 3, 4, 5, 2), (1, 3, 5, 2, 4), (1, 3, 5, 4, 2), (1, 4, 2, 3, 5), (1, 4, 2, 5, 3), (1, 4, 3, 2, 5), (1, 4, 3, 5, 2), (1, 4, 5, 2, 3), (1, 4, 5, 3, 2), (1, 5, 2, 3, 4), (1, 5, 2, 4, 3), (1, 5, 3, 2, 4), (1, 5, 3, 4, 2), (1, 5, 4, 2, 3), (1, 5, 4, 3, 2), (2, 1, 3, 4, 5), (2, 1, 3, 5, 4), (2, 1, 4, 3, 5), (2, 1, 4, 5, 3), (2, 1, 5, 3, 4), (2, 1, 5, 4, 3), (2, 3, 1, 4, 5), (2, 3, 1, 5, 4), (2, 3, 4, 1, 5), (2, 3, 4, 5, 1), (2, 3, 5, 1, 4), (2, 3, 5, 4, 1), (2, 4, 1, 3, 5), (2, 4, 1, 5, 3), (2, 4, 3, 1, 5), (2, 4, 3, 5, 1), (2, 4, 5, 1, 3), (2, 4, 5, 3, 1), (2, 5, 1, 3, 4), (2, 5, 1, 4, 3), (2, 5, 3, 1, 4), (2, 5, 3, 4, 1), (2, 5, 4, 1, 3), (2, 5, 4, 3, 1), (3, 1, 2, 4, 5), (3, 1, 2, 5, 4), (3, 1, 4, 2, 5), (3, 1, 4, 5, 2), (3, 1, 5, 2, 4), (3, 1, 5, 4, 2), (3, 2, 1, 4, 5), (3, 2, 1, 5, 4), (3, 2, 4, 1, 5), (3, 2, 4, 5, 1), (3, 2, 5, 1, 4), (3, 2, 5, 4, 1), (3, 4, 1, 2, 5), (3, 4, 1, 5, 2), (3, 4, 2, 1, 5), (3, 4, 2, 5, 1), (3, 4, 5, 1, 2), (3, 4, 5, 2, 1), (3, 5, 1, 2, 4), (3, 5, 1, 4, 2), (3, 5, 2, 1, 4), (3, 5, 2, 4, 1), (3, 5, 4, 1, 2), (3, 5, 4, 2, 1), (4, 1, 2, 3, 5), (4, 1, 2, 5, 3), (4, 1, 3, 2, 5), (4, 1, 3, 5, 2), (4, 1, 5, 2, 3), (4, 1, 5, 3, 2), (4, 2, 1, 3, 5), (4, 2, 1, 5, 3), (4, 2, 3, 1, 5), (4, 2, 3, 5, 1), (4, 2, 5, 1, 3), (4, 2, 5, 3, 1), (4, 3, 1, 2, 5), (4, 3, 1, 5, 2), (4, 3, 2, 1, 5), (4, 3, 2, 5, 1), (4, 3, 5, 1, 2), (4, 3, 5, 2, 1), (4, 5, 1, 2, 3), (4, 5, 1, 3, 2), (4, 5, 2, 1, 3), (4, 5, 2, 3, 1), (4, 5, 3, 1, 2), (4, 5, 3, 2, 1), (5, 1, 2, 3, 4), (5, 1, 2, 4, 3), (5, 1, 3, 2, 4), (5, 1, 3, 4, 2), (5, 1, 4, 2, 3), (5, 1, 4, 3, 2), (5, 2, 1, 3, 4), (5, 2, 1, 4, 3), (5, 2, 3, 1, 4), (5, 2, 3, 4, 1), (5, 2, 4, 1, 3), (5, 2, 4, 3, 1), (5, 3, 1, 2, 4), (5, 3, 1, 4, 2), (5, 3, 2, 1, 4), (5, 3, 2, 4, 1), (5, 3, 4, 1, 2), (5, 3, 4, 2, 1), (5, 4, 1, 2, 3), (5, 4, 1, 3, 2), (5, 4, 2, 1, 3), (5, 4, 2, 3, 1), (5, 4, 3, 1, 2), (5, 4, 3, 2, 1)]]
可以根據(jù)你需要隨意組合
感謝各位的閱讀!關(guān)于“如何使用Python實現(xiàn)的簡單排列組合算法”這篇文章就分享到這里了,希望以上內(nèi)容可以對大家有一定的幫助,讓大家可以學到更多知識,如果覺得文章不錯,可以把它分享出去讓更多的人看到吧!
網(wǎng)站名稱:如何使用Python實現(xiàn)的簡單排列組合算法-創(chuàng)新互聯(lián)
文章鏈接:http://m.newbst.com/article44/dceehe.html
成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供定制開發(fā)、域名注冊、網(wǎng)站策劃、網(wǎng)站制作、網(wǎng)站設(shè)計公司、定制網(wǎng)站
聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網(wǎng)站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時需注明來源: 創(chuàng)新互聯(lián)
猜你還喜歡下面的內(nèi)容