GridSearchCV調(diào)參-----------------太慢,效果也不好
成都創(chuàng)新互聯(lián)公司是一家朝氣蓬勃的網(wǎng)站建設(shè)公司。公司專(zhuān)注于為企業(yè)提供信息化建設(shè)解決方案。從事網(wǎng)站開(kāi)發(fā),網(wǎng)站制作,網(wǎng)站設(shè)計(jì),網(wǎng)站模板,微信公眾號(hào)開(kāi)發(fā),軟件開(kāi)發(fā),成都小程序開(kāi)發(fā),10余年建站對(duì)成都廣告制作等多個(gè)方面,擁有多年的網(wǎng)站設(shè)計(jì)經(jīng)驗(yàn)。這里結(jié)合Kaggle比賽的一個(gè)數(shù)據(jù)集,記錄一下使用貝葉斯全局優(yōu)化和高斯過(guò)程來(lái)尋找最佳參數(shù)的方法步驟。
1.安裝貝葉斯全局優(yōu)化庫(kù)
從pip安裝最新版本
pip install bayesian-optimization
2.加載數(shù)據(jù)集
import pandas as pd
import numpy as np
from sklearn.model_selection import StratifiedKFold
from scipy.stats import rankdata
from sklearn import metrics
import lightgbm as lgb
import warnings
import gc
pd.set_option('display.max_columns', 200)
train_df = pd.read_csv('../input/train.csv')
test_df = pd.read_csv('../input/test.csv')
目標(biāo)變量的分布
target = 'target'
predictors = train_df.columns.values.tolist()[2:]
train_df.target.value_counts()
問(wèn)題是不平衡。這里使用50%分層行作為保持行,以便驗(yàn)證集獲得最佳參數(shù)。 稍后將在最終模型擬合中使用5折交叉驗(yàn)證。
bayesian_tr_index, bayesian_val_index = list(StratifiedKFold(n_splits=2,
shuffle=True, random_state=1).split(train_df, train_df.target.values))[0]
這些bayesian_tr_index和bayesian_val_index索引將用于貝葉斯優(yōu)化,作為訓(xùn)練和驗(yàn)證數(shù)據(jù)集的索引。
3.黑盒函數(shù)優(yōu)化(LightGBM)
在加載數(shù)據(jù)時(shí),為L(zhǎng)ightGBM創(chuàng)建黑盒函數(shù)以查找參數(shù)。
def LGB_bayesian(
num_leaves, # int
min_data_in_leaf, # int
learning_rate,
min_sum_hessian_in_leaf, # int
feature_fraction,
lambda_l1,
lambda_l2,
min_gain_to_split,
max_depth):
# LightGBM expects next three parameters need to be integer. So we make them integer
num_leaves = int(num_leaves)
min_data_in_leaf = int(min_data_in_leaf)
max_depth = int(max_depth)
assert type(num_leaves) == int
assert type(min_data_in_leaf) == int
assert type(max_depth) == int
param = {
'num_leaves': num_leaves,
'max_bin': 63,
'min_data_in_leaf': min_data_in_leaf,
'learning_rate': learning_rate,
'min_sum_hessian_in_leaf': min_sum_hessian_in_leaf,
'bagging_fraction': 1.0,
'bagging_freq': 5,
'feature_fraction': feature_fraction,
'lambda_l1': lambda_l1,
'lambda_l2': lambda_l2,
'min_gain_to_split': min_gain_to_split,
'max_depth': max_depth,
'save_binary': True,
'seed': 1337,
'feature_fraction_seed': 1337,
'bagging_seed': 1337,
'drop_seed': 1337,
'data_random_seed': 1337,
'objective': 'binary',
'boosting_type': 'gbdt',
'verbose': 1,
'metric': 'auc',
'is_unbalance': True,
'boost_from_average': False,
}
xg_train = lgb.Dataset(train_df.iloc[bayesian_tr_index][predictors].values,
label=train_df.iloc[bayesian_tr_index][target].values,
feature_name=predictors,
free_raw_data = False
)
xg_valid = lgb.Dataset(train_df.iloc[bayesian_val_index][predictors].values,
label=train_df.iloc[bayesian_val_index][target].values,
feature_name=predictors,
free_raw_data = False
)
num_round = 5000
clf = lgb.train(param, xg_train, num_round, valid_sets = [xg_valid], verbose_eval=250, early_stopping_rounds = 50)
predictions = clf.predict(train_df.iloc[bayesian_val_index][predictors].values, num_iteration=clf.best_iteration)
score = metrics.roc_auc_score(train_df.iloc[bayesian_val_index][target].values, predictions)
return score
上面的LGB_bayesian函數(shù)將作為貝葉斯優(yōu)化的黑盒函數(shù)。 我已經(jīng)在LGB_bayesian函數(shù)中為L(zhǎng)ightGBM定義了trainng和validation數(shù)據(jù)集。
LGB_bayesian函數(shù)從貝葉斯優(yōu)化框架獲取num_leaves,min_data_in_leaf,learning_rate,min_sum_hessian_in_leaf,feature_fraction,lambda_l1,lambda_l2,min_gain_to_split,max_depth的值。 請(qǐng)記住,對(duì)于LightGBM,num_leaves,min_data_in_leaf和max_depth應(yīng)該是整數(shù)。 但貝葉斯優(yōu)化會(huì)發(fā)送連續(xù)的函數(shù)。 所以我強(qiáng)制它們是整數(shù)。 我只會(huì)找到它們的最佳參數(shù)值。 讀者可以增加或減少要優(yōu)化的參數(shù)數(shù)量。
現(xiàn)在需要為這些參數(shù)提供邊界,以便貝葉斯優(yōu)化僅在邊界內(nèi)搜索。
bounds_LGB = {
'num_leaves': (5, 20),
'min_data_in_leaf': (5, 20),
'learning_rate': (0.01, 0.3),
'min_sum_hessian_in_leaf': (0.00001, 0.01),
'feature_fraction': (0.05, 0.5),
'lambda_l1': (0, 5.0),
'lambda_l2': (0, 5.0),
'min_gain_to_split': (0, 1.0),
'max_depth':(3,15),
}
讓我們將它們?nèi)糠旁贐ayesianOptimization對(duì)象中
from bayes_opt import BayesianOptimization
LGB_BO = BayesianOptimization(LGB_bayesian, bounds_LGB, random_state=13)
現(xiàn)在,讓我們來(lái)優(yōu)化key space (parameters):
print(LGB_BO.space.keys)
我創(chuàng)建了BayesianOptimization對(duì)象(LGB_BO),在調(diào)用maxime之前它不會(huì)工作。在調(diào)用之前,解釋一下貝葉斯優(yōu)化對(duì)象(LGB_BO)的兩個(gè)參數(shù),我們可以傳遞給它們進(jìn)行大化:
init_points:我們想要執(zhí)行的隨機(jī)探索的初始隨機(jī)運(yùn)行次數(shù)。 在我們的例子中,LGB_bayesian將被運(yùn)行n_iter次。
n_iter:運(yùn)行init_points數(shù)后,我們要執(zhí)行多少次貝葉斯優(yōu)化運(yùn)行。
現(xiàn)在,是時(shí)候從貝葉斯優(yōu)化框架調(diào)用函數(shù)來(lái)大化。 我允許LGB_BO對(duì)象運(yùn)行5個(gè)init_points和5個(gè)n_iter。
init_points = 5
n_iter = 5
print('-' * 130)
with warnings.catch_warnings():
warnings.filterwarnings('ignore')
LGB_BO.maximize(init_points=init_points, n_iter=n_iter, acq='ucb', xi=0.0, alpha=1e-6)
優(yōu)化完成后,讓我們看看我們得到的大值是多少。
LGB_BO.max['target']
參數(shù)的驗(yàn)證AUC是0.89, 讓我們看看參數(shù):
LGB_BO.max['params']
現(xiàn)在我們可以將這些參數(shù)用于我們的最終模型!
BayesianOptimization庫(kù)中還有一個(gè)很酷的選項(xiàng)。 你可以探測(cè)LGB_bayesian函數(shù),如果你對(duì)最佳參數(shù)有所了解,或者您從其他kernel獲取參數(shù)。 我將在此復(fù)制并粘貼其他內(nèi)核中的參數(shù)。 你可以按照以下方式進(jìn)行探測(cè):
LGB_BO.probe(
params={'feature_fraction': 0.1403,
'lambda_l1': 4.218,
'lambda_l2': 1.734,
'learning_rate': 0.07,
'max_depth': 14,
'min_data_in_leaf': 17,
'min_gain_to_split': 0.1501,
'min_sum_hessian_in_leaf': 0.000446,
'num_leaves': 6},
lazy=True, #
)無(wú)錫看婦科好的醫(yī)院 http://www.csfk0731.com/
好的,默認(rèn)情況下這些將被懶惰地探索(lazy = True),這意味著只有在你下次調(diào)用maxime時(shí)才會(huì)評(píng)估這些點(diǎn)。 讓我們對(duì)LGB_BO對(duì)象進(jìn)行大化調(diào)用。
LGB_BO.maximize(init_points=0, n_iter=0) # remember no init_points or n_iter
最后,通過(guò)屬性LGB_BO.res可以獲得探測(cè)的所有參數(shù)列表及其相應(yīng)的目標(biāo)值。
for i, res in enumerate(LGB_BO.res):
print("Iteration {}: \n\t{}".format(i, res))
我們?cè)谡{(diào)查中獲得了更好的驗(yàn)證分?jǐn)?shù)!和以前一樣,我只運(yùn)行LGB_BO 10次。在實(shí)踐中,我將它增加到100。
LGB_BO.max['target']
LGB_BO.max['params']
讓我們一起構(gòu)建一個(gè)模型使用這些參數(shù)。
4.訓(xùn)練LightGBM模型
param_lgb = {
'num_leaves': int(LGB_BO.max['params']['num_leaves']), # remember to int here
'max_bin': 63,
'min_data_in_leaf': int(LGB_BO.max['params']['min_data_in_leaf']), # remember to int here
'learning_rate': LGB_BO.max['params']['learning_rate'],
'min_sum_hessian_in_leaf': LGB_BO.max['params']['min_sum_hessian_in_leaf'],
'bagging_fraction': 1.0,
'bagging_freq': 5,
'feature_fraction': LGB_BO.max['params']['feature_fraction'],
'lambda_l1': LGB_BO.max['params']['lambda_l1'],
'lambda_l2': LGB_BO.max['params']['lambda_l2'],
'min_gain_to_split': LGB_BO.max['params']['min_gain_to_split'],
'max_depth': int(LGB_BO.max['params']['max_depth']), # remember to int here
'save_binary': True,
'seed': 1337,
'feature_fraction_seed': 1337,
'bagging_seed': 1337,
'drop_seed': 1337,
'data_random_seed': 1337,
'objective': 'binary',
'boosting_type': 'gbdt',
'verbose': 1,
'metric': 'auc',
'is_unbalance': True,
'boost_from_average': False,
}
如您所見(jiàn),我將LGB_BO的最佳參數(shù)保存到param_lgb字典中,它們將用于訓(xùn)練5折的模型。
Kfolds數(shù)量:
nfold = 5
gc.collect()
skf = StratifiedKFold(n_splits=nfold, shuffle=True, random_state=2019)
oof = np.zeros(len(train_df))
predictions = np.zeros((len(test_df),nfold))
i = 1
for train_index, valid_index in skf.split(train_df, train_df.target.values):
print("\nfold {}".format(i))
xg_train = lgb.Dataset(train_df.iloc[train_index][predictors].values,
label=train_df.iloc[train_index][target].values,
feature_name=predictors,
free_raw_data = False
)
xg_valid = lgb.Dataset(train_df.iloc[valid_index][predictors].values,
label=train_df.iloc[valid_index][target].values,
feature_name=predictors,
free_raw_data = False
)
clf = lgb.train(param_lgb, xg_train, 5000, valid_sets = [xg_valid], verbose_eval=250, early_stopping_rounds = 50)
oof[valid_index] = clf.predict(train_df.iloc[valid_index][predictors].values, num_iteration=clf.best_iteration)
predictions[:,i-1] += clf.predict(test_df[predictors], num_iteration=clf.best_iteration)
i = i + 1
print("\n\nCV AUC: {:<0.2f}".format(metrics.roc_auc_score(train_df.target.values, oof)))
所以我們?cè)?折交叉驗(yàn)證中獲得了0.90 AUC。
讓我們對(duì)5折預(yù)測(cè)進(jìn)行排名平均。
5.排名平均值
print("Rank averaging on", nfold, "fold predictions")
rank_predictions = np.zeros((predictions.shape[0],1))
for i in range(nfold):
rank_predictions[:, 0] = np.add(rank_predictions[:, 0], rankdata(predictions[:, i].reshape(-1,1))/rank_predictions.shape[0])
rank_predictions /= nfold
6.提交
sub_df = pd.DataFrame({"ID_code": test_df.ID_code.values})
sub_df["target"] = rank_predictions
sub_df.to_csv("Customer_Transaction_rank_predictions.csv", index=False)
另外有需要云服務(wù)器可以了解下創(chuàng)新互聯(lián)cdcxhl.cn,海內(nèi)外云服務(wù)器15元起步,三天無(wú)理由+7*72小時(shí)售后在線,公司持有idc許可證,提供“云服務(wù)器、裸金屬服務(wù)器、高防服務(wù)器、香港服務(wù)器、美國(guó)服務(wù)器、虛擬主機(jī)、免備案服務(wù)器”等云主機(jī)租用服務(wù)以及企業(yè)上云的綜合解決方案,具有“安全穩(wěn)定、簡(jiǎn)單易用、服務(wù)可用性高、性價(jià)比高”等特點(diǎn)與優(yōu)勢(shì),專(zhuān)為企業(yè)上云打造定制,能夠滿足用戶豐富、多元化的應(yīng)用場(chǎng)景需求。
當(dāng)前標(biāo)題:貝葉斯全局優(yōu)化使用LightGBM調(diào)參-創(chuàng)新互聯(lián)
標(biāo)題網(wǎng)址:http://m.newbst.com/article6/dgipog.html
成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供品牌網(wǎng)站建設(shè)、移動(dòng)網(wǎng)站建設(shè)、外貿(mào)網(wǎng)站建設(shè)、服務(wù)器托管、網(wǎng)頁(yè)設(shè)計(jì)公司、營(yíng)銷(xiāo)型網(wǎng)站建設(shè)
聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請(qǐng)盡快告知,我們將會(huì)在第一時(shí)間刪除。文章觀點(diǎn)不代表本網(wǎng)站立場(chǎng),如需處理請(qǐng)聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時(shí)需注明來(lái)源: 創(chuàng)新互聯(lián)
猜你還喜歡下面的內(nèi)容