免费观看又色又爽又黄的小说免费_美女福利视频国产片_亚洲欧美精品_美国一级大黄大色毛片

poolgo語言,poor pool發音

golang sync.Pool的用法及實現

正如sycn.Pool的名字所示,這是go中實現的一個對象池,為什么要有這個池呢?首先go是自帶垃圾回收機制(也就是通常所說的gc)。gc會帶來運行時的開銷,對于高頻的內存申請與釋放,如果將不用的對象存放在一個池子中,用的時候從池子中取出一個對象,用完了再還回去,這樣就能減輕gc的壓力。

創新互聯建站專注為客戶提供全方位的互聯網綜合服務,包含不限于網站制作、成都網站設計、炎陵網絡推廣、微信小程序定制開發、炎陵網絡營銷、炎陵企業策劃、炎陵品牌公關、搜索引擎seo、人物專訪、企業宣傳片、企業代運營等,從售前售中售后,我們都將竭誠為您服務,您的肯定,是我們最大的嘉獎;創新互聯建站為所有大學生創業者提供炎陵建站搭建服務,24小時服務熱線:028-86922220,官方網址:m.newbst.com

對于池這個概念,之前可能聽說過連接池。能否用sync.Pool實現一個連接池呢?答案是不能的。因為對于sync.Pool而言,我們無法保證每次放回去再取出來的對象是與之前一致的,對象的內存存在著唄銷毀的可能。因此,這個sync.Pool的存在僅僅是為了減緩gc的壓力而生的。

定義sync.Pool的時候只需要設置一個New成員,它是一個函數,類型為func() interface{},當池子中沒有空閑的對象時就會調用New函數生成一個。由于pool中對象的數量不可控,因此并沒有傳遞任何與對象數量有關的參數。

然后,調用調用Get函數就可以取出一個對象,調用Put函數就可以將對象歸還到池子中。

golang sync.pool對象復用 并發原理 緩存池

在go http每一次go serve(l)都會構建Request數據結構。在大量數據請求或高并發的場景中,頻繁創建銷毀對象,會導致GC壓力。解決辦法之一就是使用對象復用技術。在http協議層之下,使用對象復用技術創建Request數據結構。在http協議層之上,可以使用對象復用技術創建(w,*r,ctx)數據結構。這樣即可以回快TCP層讀包之后的解析速度,也可也加快請求處理的速度。

先上一個測試:

結論是這樣的:

貌似使用池化,性能弱爆了???這似乎與net/http使用sync.pool池化Request來優化性能的選擇相違背。這同時也說明了一個問題,好的東西,如果濫用反而造成了性能成倍的下降。在看過pool原理之后,結合實例,將給出正確的使用方法,并給出預期的效果。

sync.Pool是一個 協程安全 的 臨時對象池 。數據結構如下:

local 成員的真實類型是一個 poolLocal 數組,localSize 是數組長度。這涉及到Pool實現,pool為每個P分配了一個對象,P數量設置為runtime.GOMAXPROCS(0)。在并發讀寫時,goroutine綁定的P有對象,先用自己的,沒有去偷其它P的。go語言將數據分散在了各個真正運行的P中,降低了鎖競爭,提高了并發能力。

不要習慣性地誤認為New是一個關鍵字,這里的New是Pool的一個字段,也是一個閉包名稱。其API:

如果不指定New字段,對象池為空時會返回nil,而不是一個新構建的對象。Get()到的對象是隨機的。

原生sync.Pool的問題是,Pool中的對象會被GC清理掉,這使得sync.Pool只適合做簡單地對象池,不適合作連接池。

pool創建時不能指定大小,沒有數量限制。pool中對象會被GC清掉,只存在于兩次GC之間。實現是pool的init方法注冊了一個poolCleanup()函數,這個方法在GC之前執行,清空pool中的所有緩存對象。

為使多協程使用同一個POOL。最基本的想法就是每個協程,加鎖去操作共享的POOL,這顯然是低效的。而進一步改進,類似于ConcurrentHashMap(JDK7)的分Segment,提高其并發性可以一定程度性緩解。

注意到pool中的對象是無差異性的,加鎖或者分段加鎖都不是較好的做法。go的做法是為每一個綁定協程的P都分配一個子池。每個子池又分為私有池和共享列表。共享列表是分別存放在各個P之上的共享區域,而不是各個P共享的一塊內存。協程拿自己P里的子池對象不需要加鎖,拿共享列表中的就需要加鎖了。

Get對象過程:

Put過程:

如何解決Get最壞情況遍歷所有P才獲取得對象呢:

方法1止前sync.pool并沒有這樣的設置。方法2由于goroutine被分配到哪個P由調度器調度不可控,無法確保其平衡。

由于不可控的GC導致生命周期過短,且池大小不可控,因而不適合作連接池。僅適用于增加對象重用機率,減少GC負擔。2

執行結果:

單線程情況下,遍歷其它無元素的P,長時間加鎖性能低下。啟用協程改善。

結果:

測試場景在goroutines遠大于GOMAXPROCS情況下,與非池化性能差異巨大。

測試結果

可以看到同樣使用*sync.pool,較大池大小的命中率較高,性能遠高于空池。

結論:pool在一定的使用條件下提高并發性能,條件1是協程數遠大于GOMAXPROCS,條件2是池中對象遠大于GOMAXPROCS。歸結成一個原因就是使對象在各個P中均勻分布。

池pool和緩存cache的區別。池的意思是,池內對象是可以互換的,不關心具體值,甚至不需要區分是新建的還是從池中拿出的。緩存指的是KV映射,緩存里的值互不相同,清除機制更為復雜。緩存清除算法如LRU、LIRS緩存算法。

池空間回收的幾種方式。一些是GC前回收,一些是基于時鐘或弱引用回收。最終確定在GC時回收Pool內對象,即不回避GC。用java的GC解釋弱引用。GC的四種引用:強引用、弱引用、軟引用、虛引用。虛引用即沒有引用,弱引用GC但有空間則保留,軟引用GC即清除。ThreadLocal的值為弱引用的例子。

regexp 包為了保證并發時使用同一個正則,而維護了一組狀態機。

fmt包做字串拼接,從sync.pool拿[]byte對象。避免頻繁構建再GC效率高很多。

如何在go語言中使用redis連接池

1.在創建連接池之后,起一個 go routine,每隔一段 idleTime 發送一個 PING 到 Redis server。其中,idleTime 略小于 Redis server 的 timeout 配置。

2.連接池初始化部分代碼如下:

p, err := pool.New("tcp", u.Host, concurrency) errHndlr(err) go func() { for { p.Cmd("PING") time.Sleep(idelTime * time.Second) } }()

3.使用 redis 傳輸數據部分代碼如下:

func redisDo(p *pool.Pool, cmd string, args ...interface{}) (reply *redis.Resp, err error) { reply = p.Cmd(cmd, args...) if err = reply.Err; err != nil { if err != io.EOF { Fatal.Println("redis", cmd, args, "err is", err) } } return }

4.其中,Radix.v2 連接池內部進行了連接池內連接的獲取和放回,代碼如下:

// Cmd automatically gets one client from the pool, executes the given command // (returning its result), and puts the client back in the pool func (p *Pool) Cmd(cmd string, args ...interface{}) *redis.Resp { c, err := p.Get() if err != nil { return redis.NewResp(err) } defer p.Put(c) return c.Cmd(cmd, args...) }

這樣,就有了系統 keep alive 的機制,不會出現 time out 的連接了,從 redis 連接池里面取出的連接都是可用的連接了。看似簡單的代碼,卻完美的解決了連接池里面超時連接的問題。同時,就算 Redis server 重啟等情況,也能保證連接自動重連。

本文名稱:poolgo語言,poor pool發音
分享鏈接:http://m.newbst.com/article22/dssgdcc.html

成都網站建設公司_創新互聯,為您提供網站建設響應式網站品牌網站建設關鍵詞優化做網站定制開發

廣告

聲明:本網站發布的內容(圖片、視頻和文字)以用戶投稿、用戶轉載內容為主,如果涉及侵權請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網站立場,如需處理請聯系客服。電話:028-86922220;郵箱:631063699@qq.com。內容未經允許不得轉載,或轉載時需注明來源: 創新互聯

商城網站建設