今天就跟大家聊聊有關使用python怎么構建一個深度神經網絡,可能很多人都不太了解,為了讓大家更加了解,小編給大家總結了以下內容,希望大家根據這篇文章可以有所收獲。
創新互聯專注于南部網站建設服務及定制,我們擁有豐富的企業做網站經驗。 熱誠為您提供南部營銷型網站建設,南部網站制作、南部網頁設計、南部網站官網定制、小程序定制開發服務,打造南部網絡公司原創品牌,更為您提供南部網站排名全網營銷落地服務。1、云計算,典型應用OpenStack。2、WEB前端開發,眾多大型網站均為Python開發。3.人工智能應用,基于大數據分析和深度學習而發展出來的人工智能本質上已經無法離開python。4、系統運維工程項目,自動化運維的標配就是python+Django/flask。5、金融理財分析,量化交易,金融分析。6、大數據分析。
1) 正則化項
2) 調出中間損失函數的輸出
3) 構建了交叉損失函數
4) 將訓練好的網絡進行保存,并調用用來測試新數據
1 數據預處理
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2017-03-12 15:11 # @Author : CC # @File : net_load_data.py from numpy import * import numpy as np import cPickle def load_data(): """載入解壓后的數據,并讀取""" with open('data/mnist_pkl/mnist.pkl','rb') as f: try: train_data,validation_data,test_data = cPickle.load(f) print " the file open sucessfully" # print train_data[0].shape #(50000,784) # print train_data[1].shape #(50000,) return (train_data,validation_data,test_data) except EOFError: print 'the file open error' return None def data_transform(): """將數據轉化為計算格式""" t_d,va_d,te_d = load_data() # print t_d[0].shape # (50000,784) # print te_d[0].shape # (10000,784) # print va_d[0].shape # (10000,784) # n1 = [np.reshape(x,784,1) for x in t_d[0]] # 將5萬個數據分別逐個取出化成(784,1),逐個排列 n = [np.reshape(x, (784, 1)) for x in t_d[0]] # 將5萬個數據分別逐個取出化成(784,1),逐個排列 # print 'n1',n1[0].shape # print 'n',n[0].shape m = [vectors(y) for y in t_d[1]] # 將5萬標簽(50000,1)化為(10,50000) train_data = zip(n,m) # 將數據與標簽打包成元組形式 n = [np.reshape(x, (784, 1)) for x in va_d[0]] # 將5萬個數據分別逐個取出化成(784,1),排列 validation_data = zip(n,va_d[1]) # 沒有將標簽數據矢量化 n = [np.reshape(x, (784, 1)) for x in te_d[0]] # 將5萬個數據分別逐個取出化成(784,1),排列 test_data = zip(n, te_d[1]) # 沒有將標簽數據矢量化 # print train_data[0][0].shape #(784,) # print "len(train_data[0])",len(train_data[0]) #2 # print "len(train_data[100])",len(train_data[100]) #2 # print "len(train_data[0][0])", len(train_data[0][0]) #784 # print "train_data[0][0].shape", train_data[0][0].shape #(784,1) # print "len(train_data)", len(train_data) #50000 # print train_data[0][1].shape #(10,1) # print test_data[0][1] # 7 return (train_data,validation_data,test_data) def vectors(y): "賦予標簽" label = np.zeros((10,1)) label[y] = 1.0 #浮點計算 return label
2 網絡定義和訓練
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2017-03-28 10:18 # @Author : CC # @File : net_network2.py from numpy import * import numpy as np import operator import json # import sys class QuadraticCost(): """定義二次代價函數類的方法""" @staticmethod def fn(a,y): cost = 0.5*np.linalg.norm(a-y)**2 return cost @staticmethod def delta(z,a,y): delta = (a-y)*sig_derivate(z) return delta class CrossEntroyCost(): """定義交叉熵函數類的方法""" @staticmethod def fn(a, y): cost = np.sum(np.nan_to_num(-y*np.log(a)-(1-y)*np.log(1-a))) # not a number---0, inf---larger number return cost @staticmethod def delta(z, a, y): delta = (a - y) return delta class Network(object): """定義網絡結構和方法""" def __init__(self,sizes,cost): self.num_layer = len(sizes) self.sizes = sizes self.cost = cost # print "self.cost.__name__:",self.cost.__name__ # CrossEntropyCost self.default_weight_initializer() def default_weight_initializer(self): """權值初始化""" self.bias = [np.random.rand(x, 1) for x in self.sizes[1:]] self.weight = [np.random.randn(y, x)/float(np.sqrt(x)) for (x, y) in zip(self.sizes[:-1], self.sizes[1:])] def large_weight_initializer(self): """權值另一種初始化""" self.bias = [np.random.rand(x, 1) for x in self.sizes[1:]] self.weight = [np.random.randn(y, x) for x, y in zip(self.sizes[:-1], self.sizes[1:])] def forward(self,a): """forward the network""" for w,b in zip(self.weight,self.bias): a=sigmoid(np.dot(w,a)+b) return a def SGD(self,train_data,min_batch_size,epochs,eta,test_data=False, lambd = 0, monitor_train_cost = False, monitor_train_accuracy = False, monitor_test_cost=False, monitor_test_accuracy=False ): """1)Set the train_data,shuffle; 2) loop the epoches, 3) set the min_batches,and rule of update""" if test_data: n_test=len(test_data) n = len(train_data) for i in xrange(epochs): random.shuffle(train_data) min_batches = [train_data[k:k+min_batch_size] for k in xrange(0,n,min_batch_size)] for min_batch in min_batches: # 每次提取一個批次的樣本 self.update_minbatch_parameter(min_batch,eta,lambd,n) train_cost = [] if monitor_train_cost: cost1 = self.total_cost(train_data,lambd,cont=False) train_cost.append(cost1) print "epoche {0},train_cost: {1}".format(i,cost1) if monitor_train_accuracy: accuracy = self.accuracy(train_data,cont=True) train_cost.append(accuracy) print "epoche {0}/{1},train_accuracy: {2}".format(i,epochs,accuracy) test_cost = [] if monitor_test_cost: cost1 = self.total_cost(test_data,lambd) test_cost.append(cost1) print "epoche {0},test_cost: {1}".format(i,cost1) test_accuracy = [] if monitor_test_accuracy: accuracy = self.accuracy(test_data) test_cost.append(accuracy) print "epoche:{0}/{1},test_accuracy:{2}".format(i,epochs,accuracy) self.save(filename= "net_save") #保存網絡網絡參數 def total_cost(self,train_data,lambd,cont=True): cost1 = 0.0 for x,y in train_data: a = self.forward(x) if cont: y = vectors(y) #將測試樣本標簽化為矩陣 cost1 += (self.cost).fn(a,y)/len(train_data) cost1 += lambd/len(train_data)*np.sum(np.linalg.norm(weight)**2 for weight in self.weight) #加上權值項 return cost1 def accuracy(self,train_data,cont=False): if cont: output1 = [(np.argmax(self.forward(x)),np.argmax(y)) for (x,y) in train_data] else: output1 = [(np.argmax(self.forward(x)), y) for (x, y) in train_data] return sum(int(out1 == y) for (out1, y) in output1) def update_minbatch_parameter(self,min_batch, eta,lambd,n): """1) determine the weight and bias 2) calculate the the delta 3) update the data """ able_b = [np.zeros(b.shape) for b in self.bias] able_w=[np.zeros(w.shape) for w in self.weight] for x,y in min_batch: #每次只取一個樣本? deltab,deltaw = self.backprop(x,y) able_b =[a_b+dab for a_b, dab in zip(able_b,deltab)] #實際上對dw,db做批次累加,最后小批次取平均 able_w = [a_w + daw for a_w, daw in zip(able_w, deltaw)] self.weight = [weight - eta * (dw) / len(min_batch)- eta*(lambd*weight)/n for weight, dw in zip(self.weight,able_w) ] #增加正則化項:eta*lambda/m *weight self.bias = [bias - eta * db / len(min_batch) for bias, db in zip(self.bias, able_b)] def backprop(self,x,y): """" 1) clacu the forward value 2) calcu the delta: delta =(y-f(z)); deltak = delta*w(k)*fz(k-1)' 3) clacu the delta in every layer: deltab=delta; deltaw=delta*fz(k-1)""" deltab = [np.zeros(b.shape) for b in self.bias] deltaw = [np.zeros(w.shape) for w in self.weight] zs = [] activate = x activates = [x] for w,b in zip(self.weight,self.bias): z =np.dot(w, activate) +b zs.append(z) activate = sigmoid(z) activates.append(activate) # backprop delta = self.cost.delta(zs[-1],activates[-1],y) #調用不同代價函數的方法求梯度 deltab[-1] = delta deltaw[-1] = np.dot(delta ,activates[-2].transpose()) for i in xrange(2,self.num_layer): z = zs[-i] delta = np.dot(self.weight[-i+1].transpose(),delta)* sig_derivate(z) deltab[-i] = delta deltaw[-i] = np.dot(delta,activates[-i-1].transpose()) return (deltab,deltaw) def save(self,filename): """將訓練好的網絡采用json(java script object notation)將對象保存成字符串保存,用于生產部署 encoder=json.dumps(data) python 原始類型(沒有數組類型)向 json 類型的轉化對照表: python json dict object list/tuple arrary int/long/float number .tolist() 將數組轉化為列表 >>> a = np.array([[1, 2], [3, 4]]) >>> list(a) [array([1, 2]), array([3, 4])] >>> a.tolist() [[1, 2], [3, 4]] """ data = {"sizes": self.sizes,"weight": [weight.tolist() for weight in self.weight], "bias": ([bias.tolist() for bias in self.bias]), "cost": str(self.cost.__name__)} # 保存網絡訓練好的權值,偏置,交叉熵參數。 f = open(filename, "w") json.dump(data,f) f.close() def load_net(filename): """采用data=json.load(json.dumps(data))進行解碼, decoder = json.load(encoder) 編碼后和解碼后鍵不會按照原始data的鍵順序排列,但每個鍵對應的值不會變 載入訓練好的網絡用于測試""" f = open(filename,"r") data = json.load(f) f.close() # print "data[cost]", getattr(sys.modules[__name__], data["cost"])#獲得屬性__main__.CrossEntropyCost # print "data[cost]", data["cost"], data["sizes"] net = Network(data["sizes"], cost=data["cost"]) #網絡初始化 net.weight = [np.array(w) for w in data["weight"]] #賦予訓練好的權值,并將list--->array net.bias = [np.array(b) for b in data["bias"]] return net def sig_derivate(z): """derivate sigmoid""" return sigmoid(z) * (1-sigmoid(z)) def sigmoid(x): sigm=1.0/(1.0+exp(-x)) return sigm def vectors(y): """賦予標簽""" label = np.zeros((10,1)) label[y] = 1.0 #浮點計算 return label
3) 網絡測試
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2017-03-12 15:24 # @Author : CC # @File : net_test.py import net_load_data # net_load_data.load_data() train_data,validation_data,test_data = net_load_data.data_transform() import net_network2 as net cost = net.QuadraticCost cost = net.CrossEntroyCost lambd = 0 net1 = net.Network([784,50,10],cost) min_batch_size = 30 eta = 3.0 epoches = 2 net1.SGD(train_data,min_batch_size,epoches,eta,test_data, lambd, monitor_train_cost=True, monitor_train_accuracy=True, monitor_test_cost=True, monitor_test_accuracy=True ) print "complete"
4 調用訓練好的網絡進行測試
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2017-03-28 17:27 # @Author : CC # @File : forward_test.py import numpy as np # 對訓練好的網絡直接進行調用,并用測試樣本進行測試 import net_load_data #導入測試數據 import net_network2 as net train_data,validation_data,test_data = net_load_data.data_transform() net = net.load_net(filename= "net_save") #導入網絡 output = [(np.argmax(net.forward(x)),y) for (x,y) in test_data] #測試 print sum(int(y1 == y2) for (y1,y2) in output) #輸出最終值
看完上述內容,你們對使用python怎么構建一個深度神經網絡有進一步的了解嗎?如果還想了解更多知識或者相關內容,請關注創新互聯成都網站設計公司行業資訊頻道,感謝大家的支持。
另外有需要云服務器可以了解下創新互聯scvps.cn,海內外云服務器15元起步,三天無理由+7*72小時售后在線,公司持有idc許可證,提供“云服務器、裸金屬服務器、高防服務器、香港服務器、美國服務器、虛擬主機、免備案服務器”等云主機租用服務以及企業上云的綜合解決方案,具有“安全穩定、簡單易用、服務可用性高、性價比高”等特點與優勢,專為企業上云打造定制,能夠滿足用戶豐富、多元化的應用場景需求。
本文題目:使用python怎么構建一個深度神經網絡-創新互聯
網站鏈接:http://m.newbst.com/article30/dchhpo.html
成都網站建設公司_創新互聯,為您提供網站設計公司、ChatGPT、微信公眾號、品牌網站制作、網站制作、軟件開發
聲明:本網站發布的內容(圖片、視頻和文字)以用戶投稿、用戶轉載內容為主,如果涉及侵權請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網站立場,如需處理請聯系客服。電話:028-86922220;郵箱:631063699@qq.com。內容未經允許不得轉載,或轉載時需注明來源: 創新互聯