用polyfit(X,Y,1)得到的擬合函數(shù)只能得到a,b,但不能得到線性相關(guān)系數(shù)R^2。如想要得到其線性相關(guān)系數(shù),可以用regress(y,X),其使用格式
“專業(yè)、務(wù)實(shí)、高效、創(chuàng)新、把客戶的事當(dāng)成自己的事”是我們每一個人一直以來堅(jiān)持追求的企業(yè)文化。 成都創(chuàng)新互聯(lián)是您可以信賴的網(wǎng)站建設(shè)服務(wù)商、專業(yè)的互聯(lián)網(wǎng)服務(wù)提供商! 專注于網(wǎng)站建設(shè)、成都做網(wǎng)站、軟件開發(fā)、設(shè)計(jì)服務(wù)業(yè)務(wù)。我們始終堅(jiān)持以客戶需求為導(dǎo)向,結(jié)合用戶體驗(yàn)與視覺傳達(dá),提供有針對性的項(xiàng)目解決方案,提供專業(yè)性的建議,創(chuàng)新互聯(lián)建站將不斷地超越自我,追逐市場,引領(lǐng)市場!
[b,bint,r,rint,stats]
=
regress(y,X);
b——擬合系數(shù)
bint——b的置信區(qū)間
r——?dú)埐钪?/p>
rint——r的置信區(qū)間
stats——檢驗(yàn)統(tǒng)計(jì)量,第一個就是相關(guān)系數(shù)
例如:
x=[。。。];y=[。。。]
X=[x
ones(n,1)];
%x的行數(shù)(列數(shù))
[b,bint,r,rint,stats]
=
regress(y,X);
在函數(shù)擬合中,如果用p表示函數(shù)中需要確定的參數(shù),那么目標(biāo)就是找到一組p,使得下面函數(shù)S的值最小:
這種算法稱為最小二乘法擬合。Python的Scipy數(shù)值計(jì)算庫中的optimize模塊提供了 leastsq() 函數(shù),可以對數(shù)據(jù)進(jìn)行最小二乘擬合計(jì)算。
此處利用該函數(shù)對一段弧線使用圓方程進(jìn)行了擬合,并通過Matplotlib模塊進(jìn)行了作圖,程序內(nèi)容如下:
Python的使用中需要導(dǎo)入相應(yīng)的模塊,此處首先用 import 語句
分別導(dǎo)入了numpy, leastsq與pylab模塊,其中numpy模塊常用用與數(shù)組類型的建立,讀入等過程。leastsq則為最小二乘法擬合函數(shù)。pylab是繪圖模塊。
接下來我們需要讀入需要進(jìn)行擬合的數(shù)據(jù),這里使用了 numpy.loadtxt() 函數(shù):
其參數(shù)有:
進(jìn)行擬合時,首先我們需要定義一個目標(biāo)函數(shù)。對于圓的方程,我們需要圓心坐標(biāo)(a,b)以及半徑r三個參數(shù),方便起見用p來存儲:
緊接著就可以進(jìn)行擬合了, leastsq() 函數(shù)需要至少提供擬合的函數(shù)名與參數(shù)的初始值:
返回的結(jié)果為一數(shù)組,分別為擬合得到的參數(shù)與其誤差值等,這里只取擬合參數(shù)值。
leastsq() 的參數(shù)具體有:
輸出選項(xiàng)有:
最后我們可以將原數(shù)據(jù)與擬合結(jié)果一同做成線狀圖,可采用 pylab.plot() 函數(shù):
pylab.plot() 函數(shù)需提供兩列數(shù)組作為輸入,其他參數(shù)可調(diào)控線條顏色,形狀,粗細(xì)以及對應(yīng)名稱等性質(zhì)。視需求而定,此處不做詳解。
pylab.legend() 函數(shù)可以調(diào)控圖像標(biāo)簽的位置,有無邊框等性質(zhì)。
pylab.annotate() 函數(shù)設(shè)置注釋,需至少提供注釋內(nèi)容與放置位置坐標(biāo)的參數(shù)。
pylab.show() 函數(shù)用于顯示圖像。
最終結(jié)果如下圖所示:
用Python作科學(xué)計(jì)算
numpy.loadtxt
scipy.optimize.leastsq
很多業(yè)務(wù)場景中,我們希望通過一個特定的函數(shù)來擬合業(yè)務(wù)數(shù)據(jù),以此來預(yù)測未來數(shù)據(jù)的變化趨勢。(比如用戶的留存變化、付費(fèi)變化等)
本文主要介紹在 Python 中常用的兩種曲線擬合方法:多項(xiàng)式擬合 和 自定義函數(shù)擬合。
通過多項(xiàng)式擬合,我們只需要指定想要擬合的多項(xiàng)式的最高項(xiàng)次是多少即可。
運(yùn)行結(jié)果:
對于自定義函數(shù)擬合,不僅可以用于直線、二次曲線、三次曲線的擬合,它可以適用于任意形式的曲線的擬合,只要定義好合適的曲線方程即可。
運(yùn)行結(jié)果:
網(wǎng)站標(biāo)題:python擬合函數(shù)用法,Python 擬合函數(shù)
本文URL:http://m.newbst.com/article42/dsssjec.html
成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供全網(wǎng)營銷推廣、ChatGPT、網(wǎng)站內(nèi)鏈、建站公司、網(wǎng)站排名、企業(yè)網(wǎng)站制作
聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請盡快告知,我們將會在第一時間刪除。文章觀點(diǎn)不代表本網(wǎng)站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時需注明來源: 創(chuàng)新互聯(lián)